

Low Power High Performance ADC/Touch Key Flash 8051 MCU

Product Description:

PL51T020 is 8-bit high performance microcontroller with fully integrated touch key functions eliminating the need for external components, 11-bit up to 8 channels ADC and other modules. With the flexible configurable options integrated, PL51T020 offers a reliable and easy way of implementing touch keys, ADC, multi-function combinations for their product applications.

With integrating up to 16 flexible touch keys (which including 4 touch keys could be shift from P2.7~P2.4 to P0.0~P0.3), PL51T020 offers the customers a reliable and easy way of implementing touch keys for the product applications.

Special algorithms are employed to reduce the possibility of false detections, increasing the touch switch application reliability under adverse environmental conditions. With auto-calibration, low operating current and low power one-key operating state, PL51T020 provides a simple and effective means of implementing touch switches in a wide range of applications.

For high reliability and low cost issues, PL51T020 builds in reliable watchdog timer (WDT) and low power detect (LPD) and low voltage reset (LVR) function. The excellent noise immunity and ESD protection ensure reliable operations in the adverse electrical environments.

PL51T020 internal integrates high precision RC oscillator to operate and switch dynamically between a range of operating modes using different clock sources to optimize microcontroller operation and minimize power consumption. The excellent noise immunity and ESD protection ensure reliable operations in the adverse electrical environments.

PL51T020 also supports three low power modes, idle mode, stop mode and sleep mode, to reduce power consumption. It supports to be wakeup speedy by touch Key action when work in the low power mode.

PL51T020 is communicating with the outside world with UART, I2C and SPI interfaces.

Besides the 4K bytes Flash program memory, other memory includes 256 bytes RAM and 128 bytes data EEPROM.

In-Circuit-Programming (ICP) supports the users to upgrade the program code and data in circuit without removing the microcontroller from the actual application board.

For easy usage, POWERLINK provides the debugger and writer.

Key Features:

- 1T Enhanced 8-Bit ET8051
- 4KB Flash and 128B EEPROM
- Fully integrated up to 16+4(shift) touch keys
- Operation Frequency@Voltage: ~4MHz@2.0~5.5V; ~8MHz@2.4~5.5V; ~12MHz@2.7~5.5V
- Operation Temperature: -40 °C ~+125 °C
- Supports Crystal Oscillator, internal 32KHz and high precision RC oscillator(4/8/12MHz, ±2%), external clock input
- Programmable System Clock
- Up to 22 bidirectional GPIO
- Four Priority Levels with 14 interrupt sources
- 8 Keyboard Interrupts
- 2 External Interrupts
- Support POR/LVR/LPD
- Three 16-bit Timers/Counters
- Four 12-bit PWM: PWM0/1/2/3
- Watchdog Timer with Prescaler
- Support UART/SPI/I2C interface
- Integrated Analog Comparator
- Integrated 11-bit 8 channels ADC
- Multi-mode Operation: Normal, Green, Stop, Sleep mode
- Support In-Circuit Programming
- Package: 24/20/16/8 PINs
- Memory Permission Control
- Flash Cycling: 100K @25℃
- EEPROM Cycling: 500K @25°C
- Data retention: 40 years @25°C

Applications:

- Wireless Mice, Keyboards and Game Controllers
- RF Remote Controller
- Small Home Appliances

Product Types

Product Name	Package	Program Flash	Data EEPROM ^{*5}	RAM	Timer	PWM	Freq@Voltage	I/O	Interface UART/SPI/I2C	АСМР	T.S.	Touch Key ^{*1} /Wakeup(Max)	ADC ^{*1}
	Touch Key Series												
PL51T020B24	SSOP24	4KB	128B	256B	3	4+1		22	1/1/1	1	1	16+4*3/16	11b/8ch
PL51T020N24	QFN24												
PL51T020T20	TSSOP20	4KB	128B	256B	3	4+1	~4M@2.0~5.5V	18	1/1/1	1	1	12+4*2/16	11b/4ch
PL51T020N20	QFN20						~ 8M@2.4~5.5V						
PL51T020S16	SOP16	4KB	128B	256B	3	4+1	~12M@2.7~5.5V	14	1/1/1	-	1	8+4*2/12	11b/4ch
PL51T020N16	QFN16												
PL51T020S8	SOP8	4KB	128B	256B	3	4+1		6	-	1*4	1	3+2*2/5	11b/2ch

Note: *1: Touch Key can't work with ADC at the same time, but can be set to work separately at different time slice.

- *2: Shift Touch Keys <15:12> can be assigned as the touch keys <15:12> with wake-up function.
- *3: Shift touch keys <15:12> or Original ones can be set to work separately at different time slice. Only Shift touch keys <15:12> or Original ones can be assigned as wake-up keys, separately.
- *4: ACMP source, only between CMP1 and INTVREF (1.2V).
- *5: In order to ensure that the Data EEPROM can be programmed stably, the LVR needs to be enabled and set to work greater than or equal to $2.4V(\geq)$.

Contents

PRODUCT DESCRIPTION:	1
PRODUCT TYPES	2
CONTENTS	3
1 OVERVIEW	9
2 FEATURES	10
3 QUICK REFERENCE DATA	
4 PIN CONFIGURATIONS	
4.1 PIN DIAGRAMS	
4.2 PIN DESCRIPTION	
4.3 TERMINOLOGY AND SYMBOL CONVENTIONS	17
5 BLOCK DIAGRAM	
6 MEMORY ORGANIZATION	19
6.1 PROGRAM MEMORY	19
6.2 EXTERNAL DATA MEMORY	20
6.3 DATA POINTER REGISTERS	
6.4 Internal Data Memory	
7 SPECIAL FUNCTION REGISTERS	
7.1 Special Function Registers Locations	21
7.2 Special Function Registers Reset Values	
7.3 Special Function Registers Definition	
7.3.1 Accumulator – ACC	
7.3.2 B Register – B	
7.3.3 Program Status Word Register - PSW	
7.3.4 Stack Pointer - SP	
7.3.5 Data Pointer – DPH, DPL	
7.3.6 Clock Control Register – CKCON	
7.3.7 Timed Access Register – TA	
7.3.8 SRST	30
8 ENHANCED CPU	31
9 SYSTEM CLOCK	32
9.1 Overview	32
9.2 Clock Definition	
9.3 Crystal Oscillator and Ceramic Resonator	33
9.4 INTERNAL 4/8/12MHz RC OSCILLATOR	34
9.5 External Clock	
9.6 INTERNAL 32KHz RC OSCILLATOR	34
9.7 System Clock Output	34

9.8 Register Definition	
9.8.1 System Clock Prescaler Register - SCKCON	35
10 RESET	
10.1 Overview	36
10.2 Power-on Reset	
10.3 Low Voltage Reset	
10.4 Low Power Detect	
10.5 External Reset	
10.6 Hardware Watchdog Reset	
10.7 Register Definition	
10.7.1 Reset Control Register - RSTCON	
11 POWER SAVING MODES	
11.1 Overview	
11.2 IDLE MODE	
11.3 STOP Mode	
11.4 SLEEP MODE	
11.5 Register Definition	
11.5.1 Power Control Register - PCON	
12 INTERRUPTS	
12.1 Overview	
12.2 Interrupt Sources	
12.3 Priority Level Structure	
12.4 Response Time	
12.5 Interrupt Inputs	
12.6 Register Definition	
12.6.1 Interrupt Enable 0 Register – IE0	
12.6.2 Interrupt Enable 1 Register – IE1	
12.6.3 Interrupt Request Control Register - IRCON	
12.6.4 Interrupt Priority 0 Register – IP0	
12.6.5 Interrupt High Priority 0 Register – IP0H	
12.6.6 Interrupt Priority 1 Register – IP1	
12.6.7 Interrupt High Priority 1 Register – IP1H	
13 EXTERNAL INTERRUPTS	
14 KEYBOARD INTERFACE	53
14.1 Register Definition	
14.1.1 Keyboard Interrupt Control Register – KBCON	53
15 I/O PORTS	54
15.1 Overview	54
15.2 Port Configuration	
15.3 Port Analog Functions	

15.4 Port	Read-Modify-Write	55
15.5 Port	ALTERNATE FUNCTIONS	56
15.6 REGIS	STER DEFINITION	61
15.6.1	Port 0 Data Register – P0	61
15.6.2	Port 0 Control Registers – P0M0/P0M1	61
15.6.3	Port 1 Data Register – P1	61
15.6.4	Port 1 Control Registers – P1M0/P1M1	61
15.6.5	Port 2 Data Register – P2	62
15.6.6	Port 2 Control Registers – P2M0/P2M1	
15.6.7	Port Analog Switch Registers – ASW0/ASW1	
15.6.8	Port shift Register – PSFT0	63
15.6.9	Port shift Register – PSFT1	
16 TIMER () AND TIMER 1	
16.1 Over	RVIEW	64
16.2 MOD	e 0 and Mode 1	64
16.3 MOD	E 2	65
16.4 MOD	E 3	65
16.5 REGIS	STER DEFINITION	
16.5.1	Timer/Counter Control Register - TCON	
16.5.2	Timer Mode Register - TMOD	
16.5.3	Timer Clock Prescaler Register - TCKCON	68
16.5.4	Timer 0 Registers – TH0/TL0	69
16.5.5	Timer 1 Registers – TH1/TL1	69
17 TIMER 2	2	
	RVIEW	
	R FUNCTION	
17.2.1	Timer Mode	
17.2.2	Timer 2 Reload Mode	
	PARE FUNCTION	
17.3.1	Compare Mode 0	
17.3.2	Compare Mode 1	
	URE FUNCTION	
17.4.1	Capture Mode 0	
17.4.2	Capture Mode 1	
17.5 PWN	1 FUNCTION	
	STER DEFINITION	
17.6.1	Timer 2 Control Register – T2CON	74
17.6.2	Timer 2 Mode Register – T2MOD	
17.6.3	Timer 2 Compare/Reload/Capture/PWM Registers – CRCH/CRCL	
17.6.4	Timer 2 Registers – TH2/TL2	
18 PWM0/1	/2/3	
18.1 OVER	RVIEW	/0

18.2 REGIS	TER DEFINITION	76
18.2.1	PWM Control Register – PWMCON0	
18.2.2	PWM0 Period Registers – PWM0PH/PWM0PL	77
18.2.3	PWM0 Duty Registers – PWM0DH/PWM0DL	
18.2.4	PWM1 Period Registers – PWM1PH/PWM1PL	
18.2.5	PWM1 Duty Registers – PWM1DH/PWM1DL	
18.2.6	PWM2 Period Registers – PWM2PH/PWM2PL	
18.2.7	PWM2 Duty Registers – PWM2DH/PWM2DL	
18.2.8	PWM3 Period Registers – PWM3PH/PWM3PL	
18.2.9	PWM3 Duty Registers – PWM3DH/PWM3DL	
10 ЖАТСИГ	OG TIMER	Q1
19.1 Regis	TER DEFINITION	
19.1.1	WDT Control Register – WDTCON	
20 UART		
	0	
	1	
	3	
	Rате	
	ERIAL PORT MULTIPROCESSOR COMMUNICATION	
	TER DEFINITION	
20.7.1	Serial Port Control Register – SCON	
20.7.2	Serial Port Data Buffer – SBUF	
21 SPI		
21 1 SPLIN	TERFACE	87
	DMMUNICATION	
	TER DEFINITION	
21.3 142015	SPI Serial Peripheral Status Register – SPSTA	
21.3.1	SPI Serial Peripheral Control Register – SPCON	
21.3.2	SPI Serial Peripheral Data Register – SPDAT	
22 I2C		91
22.1 I2C IN	TERFACE	91
22.2 I2C C	OMMUNICATION	91
22.3 REGIS	TER DEFINITION	93
22.3.1	I2C Status Register – I2CSTA	
22.3.2	I2C Control Register – I2CCON	
22.3.3	I2C Address Register – I2CADR	
22.3.4	I2C Data Register – I2CDAT	
23 A/D & TC	UCHKEY	96
23.1 Over	/IEW	
23.1.0 VER 23.1.1	Touch Key Operation	
20.1.1		

23.1.2	Touch Key & ADC Interrupt	
23.1.3	Touch Key Work Mode	
23.2 REGIS	TER DEFINITION	
23.2.1	Touch Key Registers Address Map	
23.2.2	Touch key Data Register – TKDATL	
23.2.3	Touch key Data Register – TKDATH	
23.2.4	Touch key7-0 select Register – TKCHS0	
23.2.5	Touch key15-8 select Register – TKCHS1	
23.2.6	Touch key control Register – TKCON0	
23.2.7	Touch key control Register – TKCON1	
23.2.8	Touch key control Register – TKCON2	
23.2.9	Touch key status Register – TKADCF	
23.2.10	Touch key status Register – TKCSCF	
23.2.11	Touch key status Register – TKCSOF	
23.2.12	Touch key Wakeup threshold Register – TKWKL0	
23.2.13	Touch key Wakeup threshold Register – TKWKH0	
23.2.14	Touch key Wakeup threshold Register – TKWKL1	
23.2.15	Touch key Wakeup threshold Register – TKWKH1	
24 ANALOG	COMPARATOR	
	/IEW	
	TER DEFINITION	
24.2.1	Comparator Control Register 0 – CMPCON0	
24.2.2	Comparator Control Register 1 – CMPCON1	
25 FLASH &	EEPROM	111
25.1 Мемс	DRY ENCRYPTION	111
25.2 REGIS	TER DEFINITION	
25.2.1	EEPROM Control Register – EECON	112
26 ICP (IN-C	CIRCUIT PROGRAMMING)	113
26.1 Overv	/IEW	
	OPTIONS	
	ICAL CHARACTERISTICS	
	UTE MAXIMUM RATINGS	
	ECTRICAL CHARACTERISTICS	
	ECTRICAL CHARACTERISTICS	
28.3.1	External Clock Characteristics	
28.3.2	Internal RC OSC Characteristics	
28.3.3	Crystal Oscillator/Ceramic Resonator Characteristics	
	ARATOR ELECTRICAL CHARACTERISTICS	
	APPLICATION	
29.1 Touch	ікеу Demo	117

30 PACKAGE DIMENSIONS	
30.1 SSOP24 Package	
30.2 SOP16 PACKAGE	
30.3 SOP8 PACKAGE	
30.4 QFN24 Package	
30.5 QFN20 PACKAGE	
30.6 QFN16 Package	
30.7 TSSOP20 PACKAGE	
31 ORDERING INFORMATION	
32 DOCUMENT REVISION HISTORY	
33 IMPORTANT NOTICE	

1 Overview

PL51T020 series are а single-chip microcontroller based on a high performance 1T architecture 80C51 CPU which have a fully compatible instruction set with standard 80C51 series microcontroller, and execute instructions in 1~4 clock cycles (about 7~8 times the rate of a standard 8051 chip). The PL51T020 series have a 22 bi-direction GPIO, a 14-source (including 2 external interrupt sources), 4-priority-level interrupt structure, a fully integrated touch key function without the need for external components.

With integrating up to 16 flexible touch keys (which including 4 touch keys could be shift from P2.7~P2.4 to P0.0~P0.3), PL51T020 offers the customers a reliable and easy way of implementing touch keys for the product applications.

Special algorithms are employed to reduce the possibility of false touch action identifications, improving the touch key application reliability under adverse environmental conditions. With supporting auto calibration configuration, touch key could be working at a wide range of dynamic capacitance with low power consumption and high sensitivity identification.

For high reliability and low cost issues, PL51T020 builds in reliable watchdog timer (WDT), low power detect (LPD) and low voltage reset (LVR) functions. The excellent noise immunity and ESD protection ensure reliable operations in the adverse electrical environments.

PL51T020 integrates low and high frequency oscillators to operate and switch dynamically between a range of operating modes using different clock sources to optimize microcontroller operation and minimize power consumption.

In order to reduce power consumption, PL51T020 could be work in three low power modes, green mode, stop mode and sleep mode, it supports to be wakeup speedy by keyboard action when work in the low power mode.

PL51T020 is communicating with the outside world with UART, I2C and SPI interfaces.

Besides the 4K bytes flash program memory with Memory-Permission-Control, other memory includes 256 bytes RAM Data Memory as well as 128 bytes EEPROM memory is integrated.

In-Circuit-Programming (ICP) support the users to upgrade the program code and data in circuit without removing the microcontroller from the actual application board.

For easy usage, POWERLINK provides the debugger and writer.

PL51T020 is targeting at home appliance such as Wireless Mice, Keyboards and Game Controllers, RF Remote Controller, Induction cooker, Microwave oven, Washing machine, Clothes dryer, Dishwasher, Refrigerator, Air conditioner and etc.

PL51T020

2 Features

📕 Basic

- ♦ 1T 8-bit ET8051 core
- ✤ Fully integrated 16 touch key functions with no external components
- ♦ Operating Voltage @ Frequency:
 - ✓ ~4MHz@2.0~5.5V
 - ✓ ~8MHz@2.4~5.5V
 - ✓ ~12MHz@2.7~5.5V
- ♦ Oscillator Type
 - ✓ Crystal Oscillator: 400KHz to 12MHz

4 Peripheral Features

- ✤ Four Priority Levels with 14 interrupt sources
 - ✓ Two External Interrupt: INT0B and INT1B
 - ✓ T0&T1 Overflow Interrupt
 - ✓ T2 Overflow, Reload, Compare/Capture Interrupt
 - ✓ UART Transmit and Receive Interrupt
 - ✓ EEPROM Write Finished Interrupt
 - ✓ Analog Comparator Interrupt
 - Keyboard Interrupt
 - ✓ Touch Key Interrupt
 - ✓ SPI Interrupt
 - ✓ I2C Interrupt
 - ✓ ADC Finish Converting Interrupt
- ♦ POR/LVR/LPD support
- ♦ Four LVR threshold Level by Fuse:
 - ✓ 2.1/2.4/3.7/4.3 V

- ✓ Internal RC Oscillator: 4/8/12MHz (±2%) and 32KHz
- ✓ External Clock: 400KHz to 12MHz
- ♦ Up to 22 bidirectional General Purpose I/O
 - ✓ Input-Only with configurable pull high resistor
 - ✓ Push-Pull Output Drive Capacity: 20mA (@5V, Total: <100mA)
 - Operation Temperature: -40℃ to +125℃
- ♦ Two LPD threshold Level by Fuse:
 - ✓ 2.7/4.0 V
- ♦ Register Timed Access Protection
- ♦ Programmable System Clock
- ♦ Multi-mode Operation:
 - ✓ Normal/Idle/Stop/Sleep
- ♦ 16-bit Timers/Counters:
 - ✓ 80C51-like Timer 0 & 1
 - ✓ 8052-like Timer 2 with Compare/Capture Unit (CCU)
- ♦ Four 12-bit PWM: PWM0/1/2/3
- Watchdog Timer with Additional Configurable Prescaler: WDT
- ♦ UART/SPI/I2C Interface
- ♦ Analog Digital Converter: ADC
 - ✓ 11-bit resolution
 - ✓ Up to 8 multiplexed channels
 - ✓ support external input VREF

♦ 4K bytes Program Flash

EFT: >4KV

 \Leftrightarrow ESD: >2KV (HBM)

 \diamond

∻

∻

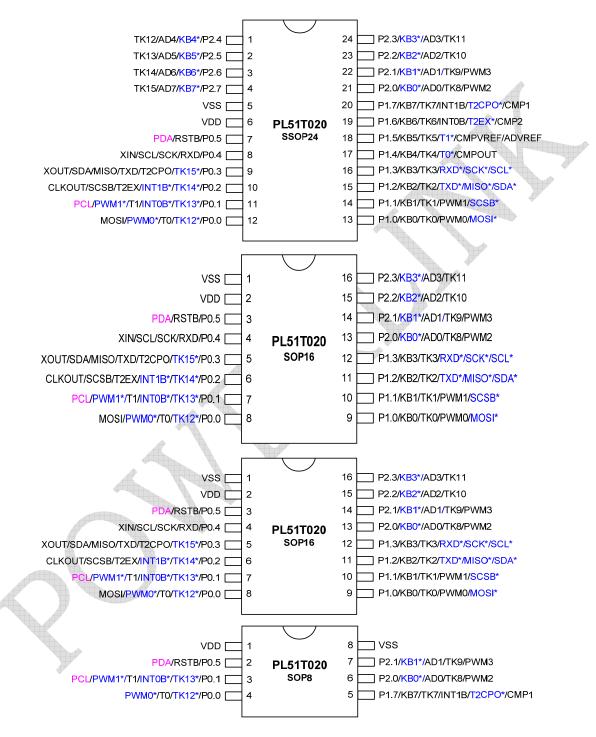
📥 Memory

Datasheet (Preliminary Version)

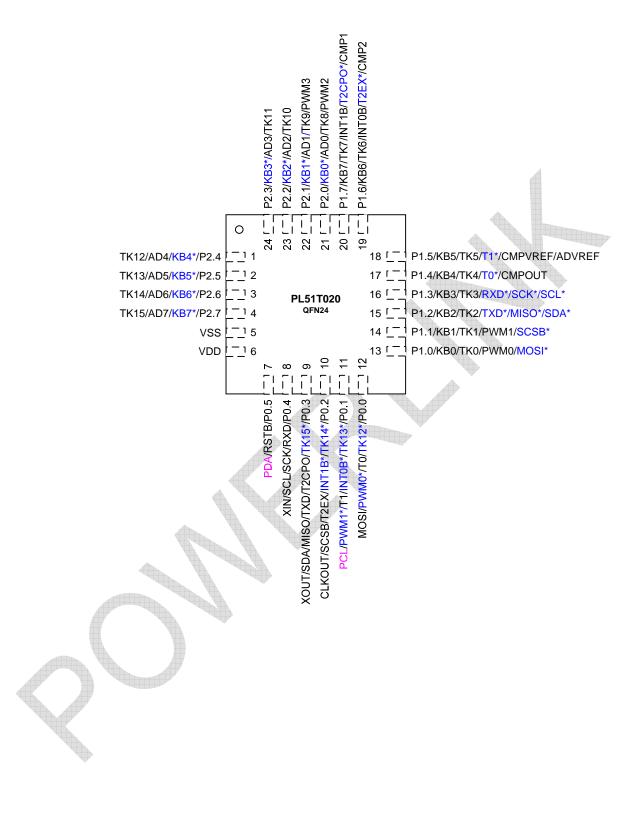
Support In-Circuit Programming: ICP

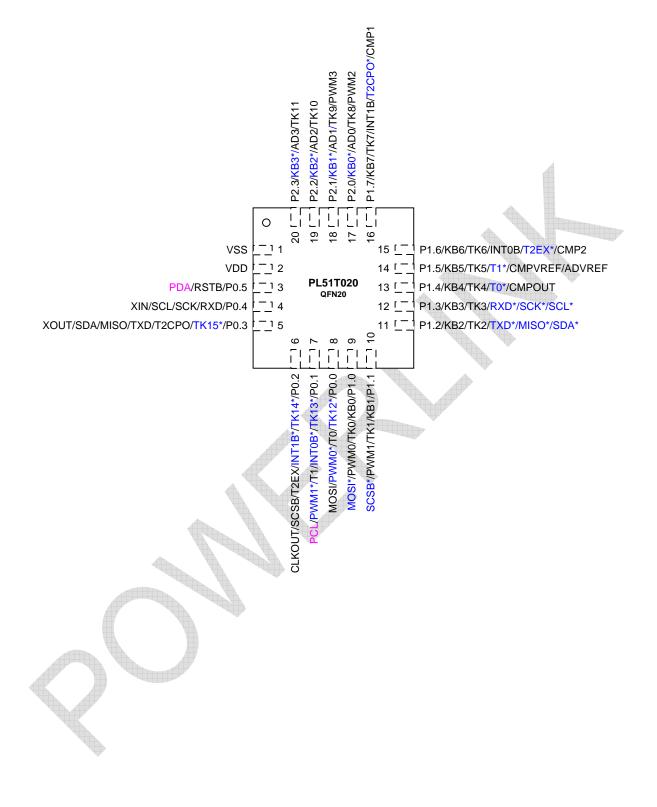
Analog Comparator: ACMP

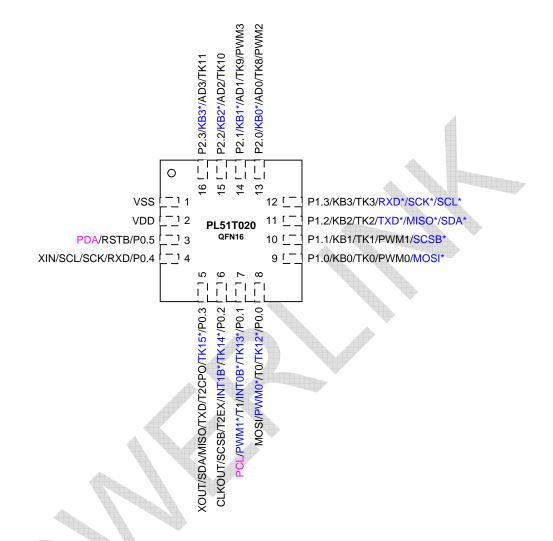
- ♦ 256 bytes internal scratch-pad RAM
- Memory Programming Permission Control


- ♦ Package Types
 - ✓ SOP8/SOP16/TSSOP20/SSOP24
 - ✓ QFN16/QFN20/QFN24
- ♦ Flash Cycling: 100K @25°C
- ♦ EEPROM Cycling: 500K @25°C
- ♦ Data retention: 40 years @25°C

3 Quick Reference Data

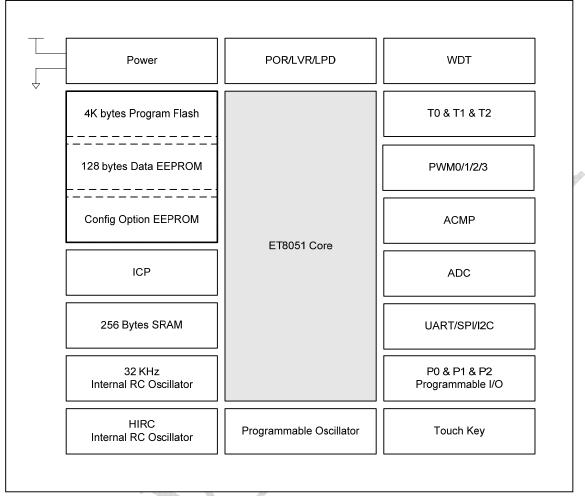

	· · ·	
Parameter	Value	Units
Min Supply Voltage	2.0	V
Operating Temperature Range	-40 to +125	°C
Internal RC OSC Frequency	4/8/12	MHz
Internal RC OSC Precision @ 25°C	±2	%
Push-Pull Output Drive Capacity @ 5V	20	mA
Push-Pull Output Drive Capacity @ 3.3V	10	mA
Total Push-Pull Output Drive Capacity	<100	mA
Current Consumption @ Sleep Mode	1	uA


4 Pin Configurations


4.1 Pin Diagrams

Note:

- The outside pin function has the highest priority, and the inner pin function has the lowest priority. It means that if the higher priority function is enabled, the lower priority function can't be used even when the lower priority function is also enabled.
- 2) The pin name colored blue with * denoted the shift ports, the pin function available only when the relative shift control bit in SFR "PSFT0~1" is set.


4.2 Pin Description

Symbol	Туре	Descriptions
VDD	Power	Power Supply (2.0~5.5V)
VSS	Power	Ground (0V)
RSTB	Digital Input	Reset Pin, Active Low
XIN	Analog Input	Crystal Oscillator Input
XOUT	Analog Output	Crystal Oscillator Output
CLKOUT	Digital Output	Internal Clock Output
SCL	Digital I/O	Clock for I2C Interface
SDA	Digital I/O	Data I/O for I2C Interface
SCSB	Digital Input	Enable Input for SPI Interface, active Low
SCK	Digital I/O	Clock for SPI Interface
MISO	Digital I/O	Master Data Input or Slave Data Output for SPI Interface
MOSI	Digital I/O	Master Data Output or Slave Data Input for SPI Interface
RXD	Digital Input	RXD of Serial Port
TXD	Digital Output	TXD of Serial Port
Т0	Digital Input	Timer 0 Input
T1	Digital Input	Timer 1 Input
T2EX	Digital Input	Timer 2 External Capture Input
Т2СРО	Digital Output	Timer 2 Compare/PWM Ouput
INT0B	Digital Input	External Interrupt 0
INT1B	Digital Input	External Interrupt 1
PWM0	Digital Output	PWM 0 Output
PWM1	Digital Output	PWM 1 Output
PWM2	Digital Output	PWM 2 Output
PWM3	Digital Output	PWM 3 Output
CMP1	Analog Input	Comparator Positive 1 Input
CMP2	Analog Input	Comparator Positive 2 Input
CMPVREF	Analog Input	Comparator Reference Voltage Input
CMPOUT	Digital Output	Comparator Output
TK0~15	Analog Input	Touch Key Inputs
KB0~7	Analog Input	Keyboard Inputs
P0.0~P0.5	Digital I/O	General purpose I/O Port 0
P1.0~P1.7	Digital I/O	General purpose I/O Port 1
P2.0~P2.7	Digital I/O	General purpose I/O Port 2
PCL	Digital Input	Clock Input for ICP (In Circuit Program) Mode
PDA	Digital I/O	Data I/O for ICP (In Circuit Program) Mode
ADVREF	Analog Input	ADC Reference Voltage Input
AD0~AD7	Analog Input	ADC Inputs

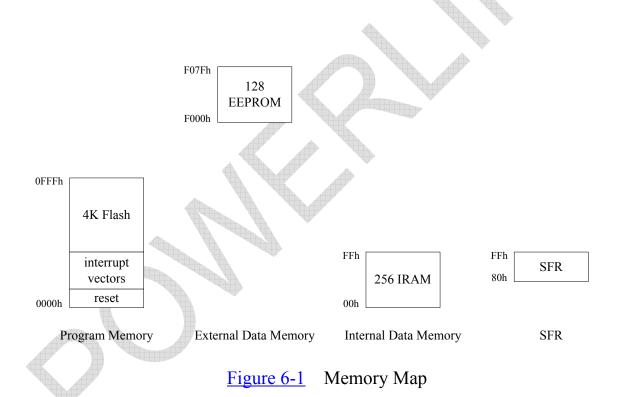
Symbol	Description	Symbol	Description
CPU	Control Processor Unit	PFL	Program Flash
ALU	Arithmetic-Logic Unit	DEE	Data EEPROM
MSB	Most Significant Bit	NVR	NVR EEPROM
LSB	Least Significant Bit	CEE	Code Fuse EEPROM
SFR	Special Function Register	TEE	Trim Fuse EEPROM
ISR	Interrupt Service Routine unit	ІСР	In-Circuit Programming
POR	Power On Reset	ICD	In-Circuit Debugging
LVR	Low Voltage Reset	ISP	In-System Programming
LPD	Low Power Detect	TW	Write operation is permitted only after
			open a window by 'TA' register
PMU	Power Management Unit	SPI	Serial Peripheral Interface
PWM	Pulse Width Modulation	I2C	Two-Wire Interface
WDT	Watch Dog Timer	UART	Universal Asynchronous Receiver
			Transmitter
CCU	Compare/Capture Unit	ADC	Analog Digital Converter
ТА	Timed Access	DAC	Digital Analog Converter
ACMP	Analog Comparator	САР	Capacitive Touch Sensor

4.3 Terminology and Symbol Conventions

5 Block Diagram

	Figure 5-1	Block diagram	
\sim			

6 Memory Organization


The ET8051 microcontroller core incorporates the Harvard architecture, with separate code and data spaces.

Memory organization in the ET8051 is similar to that of the industry standard 8051. There are three memory areas: Program Memory (Internal FLASH), External Data Memory (External EEPROM) and Internal Data Memory (Internal RAM).

The Program Memory includes 4K bytes program FLASH.

The External Data Memory includes 128 bytes data EEPROM.

The Internal Data Memory includes 256 bytes internal scratch-pad RAM.

6.1 Program Memory

Program memory is used for storing program code, after reset, the CPU starts program execution at location 0000h. The lower part of program memory includes interrupt and reset vectors. The interrupt vectors are spaced at 8-byte intervals, starting from 0003h.

6.2 External Data Memory

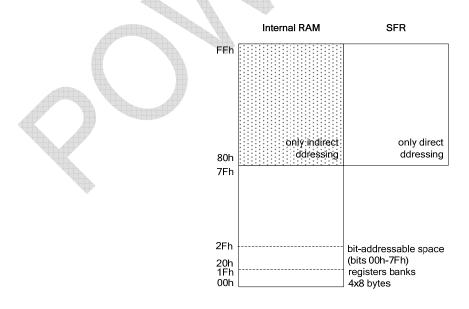
External data memory is used for data storage.

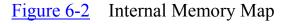
The 128 bytes data memory, it's address mapped into F000h~F07Fh.

6.3 Data Pointer Registers

Data pointers accelerate data blocks moving. Data Pointer Register (DPTR) is a 16-bit register that is used to address external memory or peripherals.

The ET8051 includes one Data Pointer Register. The active Data Pointer Register can be accessed as SFRs: DPH, DPL.


6.4 Internal Data Memory


The internal data memory interface services up to 256 bytes data memory. The memory space accommodates also 128 bytes of Special Function Registers.

Addresses lower than 80h access lower 128 bytes of internal data memory. Both direct and indirect addressing can be used in this case.

Indirect addressing of locations higher than 7Fh accesses upper 128 bytes of internal data memory, while direct addressing of locations higher than 7Fh accesses SFR space.

The lower 128 bytes contain work registers (00h ... 1Fh) and bit-addressable memory (20h ... 2Fh). The lowest 32 bytes form four banks, each consisting of eight registers (R0-R7). Two bits of the program memory status word (PSW) select which bank is in use. The next 16 bytes of memory form a block of bit-addressable memory, accessible via 00h-7Fh addresses.

7 Special Function Registers

7.1 Special Function Registers Locations

The map of Special Function Registers is shown in the following Table. Some addresses are occupied, while the others are not implemented. Read & write access to unimplemented addresses will target the External SFR Interface.

Hex/	X000	X001	X010	X011	X100	X101	X110	X111	Bin/
Bin									Hex
F8	RSTCON	PWMCON1	PWMCON0	PWM0PL	PWM0PH	PWM0DL	PWM0DH	TA	FF
FO	В			PWM1PL	PWM1PH	PWM1DL	PWM1DH	SRST	F7
E8	PWM2PL	PWM2PH	PWM2DL	PWM2DH	PWM3PL	РѠМЗРН	PWM3DL	PWM3DH	EF
EO	ACC	SPSTA	SPCON	SPDAT					E7
D8			I2CDAT	I2CADR	I2CCON	I2CSTA			DF
DO	PSW		TKWKL0	TKWKH0	TKWKL1	TKWKH1	DADAT0	DADAT1	D7
C8	T2CON	T2MOD	CRCL	CRCH	TL2	TH2			CF
C0	IRCON	IP1H							C7
B8	IE1	IP1			KBCON	CMPCON0	CMPCON1		BF
B0		IP0H	P0M1	P0M0	P1M0	P1M1	P2M0	P2M1	B7
A8	IE0	IP0			ASW0	ASW1	PSFT0	PSFT1	AF
AO	P2	TKDATL	TKDATH	TKCHS0	TKCHS1	TKCON0	TKCON1	TKCON2	A7
98	SCON	SBUF				TKADCF	TKCSCF	TKCSOF	9F
90	P1						SCKCON	EECON	97
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON	TCKCON	8F
80	P0	SP	DPL	DPH			WDTCON	PCON	87

Table 7-1 Special Function Registers Locations

The 16 addresses from SFR space are both byte- and bit-addressable. The bit-addressable SFRs are registers which addresses end with 000'b (80'h, 88'h, 90'h ... F8'h). Those 16 registers (128 bits) together with 128 bits from internal data memory (locations 20'h ... 2F'h) form the bit-addressable space.

Hex/	X000	X001	X010	X011	X100	X101	X110	X111	Bin/
Bin									Hex
				SF	'R	1			1
F8									FF
FO									F7
E8									EF
EO									E7
D8									DF
D 0									D7
C8									CF
C0							The second secon		C7
B8									BF
B0									B7
A8						A			AF
A0									A7
98									9F
90									97
88									8 F
80									87
									07
Hex/	X000	X001	X010	X011	X100	X101	X110	X111	Bin/
	X000	X001	X010			X101	X110	X111	
Hex/ Bin			D. 100	Interna	I RAM				Bin/ Hex
Hex/ Bin 78	2Fh.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7	Bin/ Hex 7F
Hex/ Bin 78 70	2Fh.0 2Eh.0		D. 100	Interna	I RAM			2Fh.7 2Eh.7	Bin/ Hex 7F 77
Hex/ Bin 78 70 68	2Fh.0 2Eh.0 2Dh.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7	Bin/ Hex 7F 77 6F
Hex/ Bin 78 70 68 60	2Fh.0 2Eh.0 2Dh.0 2Ch.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7	Bin/ Hex 7F 77 6F 67
Hex/ Bin 78 70 68 60 58	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7	Bin/ Hex 7F 77 6F 6F 67 5F
Hex/ Bin 78 70 68 60 58 50	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7	Bin/ Hex 7F 77 6F 6F 67 5F 57
Hex/ Bin 78 70 68 60 58 50 48	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7	Bin/ Hex 7F 77 6F 67 5F 57 4F
Hex/ Bin 78 70 68 60 58 50 48 40	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7	Bin/ Hex 7F 77 6F 6F 67 5F 57 4F 47
Hex/ Bin 78 70 68 60 58 50 48 40 38	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 28h.7 27h.7	Bin/ Hex 7F 7F 6F 67 5F 57 4F 47 3F
Hex/ Bin 78 70 68 60 58 50 48 40 38 30	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 28h.7 27h.7 26h.7	Bin/ Hex 7F 77 6F 67 5F 57 4F 47 3F 37
Hex/ Bin 78 70 68 60 58 50 48 40 38 30 28	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0 25h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 27h.7 26h.7 25h.7	Bin/ Hex 7F 7F 6F 67 5F 57 4F 47 3F 37 2F
Hex/ Bin 78 70 68 60 58 50 48 40 38 30 28 20	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0 25h.0 24h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 27h.7 26h.7 25h.7 24h.7	Bin/ Hex 7F 77 6F 67 5F 57 4F 47 3F 37 2F 27
Hex/ Bin 78 70 68 60 58 50 48 40 38 30 28 20 18	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0 25h.0 24h.0 23h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 27h.7 26h.7 25h.7 24h.7 23h.7	Bin/ Hex 7F 7F 77 6F 67 5F 57 4F 47 3F 37 2F 27 1F
Hex/ Bin 78 70 68 60 58 50 48 40 38 30 28 20 18 10	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0 25h.0 24h.0 23h.0 22h.0	2Fh.1 2Eh.1	2Fh.2 2Eh.2	Interna 2Fh.3 2Eh.3	I RAM 2Fh.4 2Eh.4	2Fh.5 2Eh.5	2Fh.6 2Eh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 29h.7 28h.7 27h.7 26h.7 26h.7 25h.7 24h.7 23h.7 22h.7	Bin/ Hex 7F 7F 77 6F 67 5F 57 4F 47 3F 37 2F 27 1F 17
Hex/ Bin 78 70 68 60 58 50 48 40 38 30 28 20 18	2Fh.0 2Eh.0 2Dh.0 2Ch.0 2Bh.0 2Ah.0 29h.0 28h.0 27h.0 26h.0 25h.0 24h.0 23h.0	2Fh.1	2Fh.2	Interna 2Fh.3	I RAM 2Fh.4	2Fh.5	2Fh.6	2Fh.7 2Eh.7 2Dh.7 2Ch.7 2Bh.7 2Ah.7 29h.7 28h.7 27h.7 26h.7 25h.7 24h.7 23h.7	Bin/ Hex 7F 7F 77 6F 67 5F 57 4F 47 3F 37 2F 27 1F

Table 7-2 Bit-addressable Space

7.2 Special Function Registers Reset Values

SFR	ADR	B7	B6	B5	B4	B3	B2	B1	B0	RST
CPU										
ACC	E0H	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00H
В	F0H	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00H
PSW	D0H	СҮ	AC	F0	RS1	RS0	OV	F1	Р	00H
SP	81H	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0	07H
DPH	83H	DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0	00H
DPL	82H	DPL.7	DPL.6	DPL.5	DPL.4	DPL.3	DPL.2	DPL.1	DPL.0	00H
CKCON	8EH	CKCON.7	CKCON.6	CKCON.5	CKCON.4	CKCON.3	CKCON.2	CKCON.1	CKCON.0	88H
ТА	FFH	TA.7	TA.6	TA.5	TA.4	TA.3	TA.2	TA.1	TA.0	FFH
Clock Control										L
SCKCON	96H	D7	D6	D5	D4	D3	D2	D1	D0	00h
Reset Control						Landana Valor				L
RSTCON	F8H	-	-	-	LPDF	PORF	LVRF	EXRF	WDRF	2xh
SRST	F7H	-	-				-	-	D0	00h
Power Control										•
PCON	87H	SMOD		ISR_TM	PMW	P2SEL	SLEEP	STOP	IDLE	08h
Interrupt Contr	rol		The second		ano ano an					L
IE0	A8H	EA	- /	ET2	ES0	ET1	EX1	ET0	EX0	00h
IE1	B8H	ET2R	-	ETK	EKB	ET2C	ECMP	ESPI	EI2C	00h
IRCON	С0Н	T2RF	TF2	TKF	KBF	T2CF	CMPF	-	-	00h
IP0	А9Н	PEE	-	PT2	PT2	PT1	PX1	PT0	PX0	00h
ІРОН	B1H	РЕЕН	_	РТ2Н	PS0H	PT1H	PX1H	РТОН	РХ0Н	00h
IP1	В9Н	PT2R*	-	РТК	РКВ	PT2C	РСМР	PSPI	PI2C	00h
IP1H	C1H	PT2RH*	-	РТКН	РКВН	PT2CH	РСМРН	PSPIH	PI2CH	00h
Keyboard Con	trol	·							·	
KBCON	BCH	D7	D6	D5	D4	D3	D2	D1	D0	00h
Port Control		L							L	
P0	80H	-	-	D5	D4	D3	D2	D1	D0	00h
Р0М0	B2H	-	-	D5	D4	D3	D2	D1	D0	00h
P0M1	B3H	-	-	D5	D4	D3	D2	D1	D0	00h

Table 7-3 Special Function Registers Reset Values

SFR	ADR	B7	B6	B5	B4	B3	B2	B1	B0	RST
P1	90H	D7	D6	D5	D4	D3	D2	D1	D0	00h
P1M0	B4H	D7	D6	D5	D4	D3	D2	D1	D0	00h
P1M1	B5H	D7	D6	D5	D4	D3	D2	D1	D0	00h
P2	A0H	D7	D6	D5	D4	D3	D2	D1	D0	00h
P2M0	B6H	D7	D6	D5	D4	D3	D2	D1	D0	00h
P2M1	B7H	D7	D6	D5	D4	D3	D2	D1	D0	00h
ASW0	ACH	D7	D6	D5	D4	D3	D2	D1	D0	00h
ASW1	ADH	D7	D6	D5-	D4	D3	D2	DI	D0	00h
PSFT0	AEH	SPI	I2C	UART	INT1B	INT0B	T2	T1	то	00h
PSFT1	AFH	-	-	-	-	KEYB	ТКСН	PWM1	PWM0	00H
Timer0/1/2Cor	ntrol					I	Autorion, Auto		105.	
TCON	88H	TF1	TR1	TF0	TR0	IE1	ITI	IE0	IT0	00h
TMOD	89H	T1Gate	T1c/t	T1M1	T1M0	T0Gate	T0c/t	T0M1	ТОМО	00h
TCKCON	8FH	-	T2PS2	T2PS1	T2PS0	T1PS1	T1PS0	T0PS1	T0PS0	4Fh
TH0	8CH	D7	D6	D5	D4	D3	D2	D1	D0	00h
TL0	8AH	D7	D6	D5	D4	D3	D2	D1	D0	00h
TH1	8DH	D7	D6	D5	D4	D3	D2	D1	D0	00h
TL1	8BH	D7	D6	D5	D4	D3	D2	D1	D0	00h
T2CON	C8H	T2EN	AES1	AES0	T2R1	T2R0	T2CM	-	-	00h
T2MOD	С9Н	-				-	D2	D1	D0	00h
CRCH	СВН	D7	D6	D5	D4	D3	D2	D1	D0	00h
CRCL	САН	D7	D6	D5	D4	D3	D2	D1	D0	00h
TH2	CDH	D7	D6	D5	D4	D3	D2	D1	D0	00h
TL2	ССН	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM Control										
PWMCON0	FAH	PWM1EN	PWM0EN	PWM1DS	PWM0DS	PWM1PS1	PWM1PS0	PWM0PS1	PWM0PS0	00h
PWMCON1	F9H	PWM3EN	PWM2EN	PWM3DS	PWM2DS	PWM3PS1	PWM3PS0	PWM2PS1	PWM2PS0	00h
PWM0PH	FCH	-	-	-	-	D3	D2	D1	D0	00h
PWM0PL	FBH	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM0DH	FEH	-	-	-	-	D3	D2	D1	D0	00h
PWM0DL	FDH	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM1PH	F4H	-	-	-	-	D3	D2	D1	D0	00h
PWM1PL	F3H	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM1DH	F6H	-	-	-	-	D3	D2	D1	D0	00h

SFR	ADR	B7	B6	B5	B4	B3	B2	B1	B0	RST
PWM1DL	F5H	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM2PH	E9H	-	-	-	-	D3	D2	D1	D0	00h
PWM2PL	E8H	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM2DH	EBH	-	-	-	-	D3	D2	D1	D0	00h
PWM2DL	EAH	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM3PH	EDH	-	-	-	-	D3	D2	D1	D0	00h
PWM3PL	ECH	D7	D6	D5	D4	D3	D2	D1	D0	00h
PWM3DH	EFH	-	-	-	-	D3	D2	DI	D0	00h
PWM3DL	EEH	D7	D6	D5	D4	D3	D2	DI	D0	00h
WDT Control								-posterejo.	- Yougottoo.	
WDTCON	86H	WDTEN	-	WDTIEN	WDTIF	WDTPS3	WDTPS2	WDTPS1	WDTPS0	00h
UART Control										
SCON	98H	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00h
SBUF	99H	D7	D6	D5	D4	D3	D2	D1	D0	00h
SPI Control							. Another			
SPSTA	E1H	SPIF	WCOL	SSERR	MODF		-	-	-	00h
SPCON	E2H	SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0	14h
SPDAT	E3H	D7	D6	D5	D4	D3	D2	D1	D0	00h
I2C Control										
I2CSTA	DDH	D7	D6	D5	D4	D3	D2	D1	D0	F8h
I2CCON	DCH	CR2	ENS1	STA	STO	SI	AA	CR1	CR0	00h
I2CDAT	DAH	D7	D6	D5	D4	D3	D2	D1	D0	00h
I2CADR	DBH	ADR.6	ADR.5	ADR.4	ADR.3	ADR.2	ADR.1	ADR.0	GC	00h
SPDAT	ЕЗН	D7	D6	D5	D4	D3	D2	D1	D0	00h
Touch Key Con	ntrol									
TKWKL0	D2H	D7	D6	D5	D4	D3	D2	D1	D0	00h
ТКWКН0	D3H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKWKL1	D4H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKWKH1	D5H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKDATL	A1H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKDATH	A2H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKCHS0	A3H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKCHS1	A4H	D7	D6	D5	D4	D3	D2	D1	D0	00h
TKCON0	A5H	TKEN	ADCEN	-	WAIT_CPURD	FREQ_SEL2	FREQ_SEL1	FREQ_SEL0	MODE	00h

V1.5©2021

TKCON1A6HSTARTACCUM2ACCUM1ACCUM0AVE_DISIRIG_SELFUNC_FLGOV00hTKCON2A7HCAP_LPSES_GAP2SES_GAP1SES_GAP0ISLE_STAWAIT_CPUSTA_GAP1STA_GAP000hTKADCF9DHINJECTADC_PUMPIREF_ADJ1IREF_ADJ0REF_GAPADC_VREF2ADC_VREF1ADC_VREF0ADC	SFR	ADR	B7	B6	B5	B4	B3	B2	B1	B0	RST
TKADCF9DHINJECT ADC_PUMP $IREF_ADJI$ $IREF_ADJI$ REF_GAP ADC_VREF2 ADC_VREF1 ADC_VREF0 $00h$ TKCSCF PEH $C2V_CHA$ $C2V_CHA$ $C2V_CHA$ $C2V_CHA$ $C2V_CHA$ $C2V_CHA$ $C2V_CHA$ CAP_SIZ CAP_SIZ CAP_SIZ CAP_SIZ DAC_VREF0 $00h$ TKCSOF9FH $-C$ COC CHS CH_SW0 CS_OFST3 CS_OFST2 CS_OFST1 CS_OFST0 $0Fh$ TKCSOF9FH $-C$ $CPOL$ CH_SW1 CH_SW0 CS_OFST3 CS_OFST2 CS_OFST1 CS_OFST0 $0Fh$ TKCSOF9FH $-C$ $CPOL$ CH_SW1 CH_SW0 CS_OFST3 CS_OFST2 CS_OFST1 CS_OFST0 $0Fh$ TKCSOF9FH $-C$ $CPOL$ CH_SW1 CH_SW0 CS_OFST3 CS_OFST2 CS_OFST1 CS_OFST0 $0Fh$ TKCSOF9FH $-C$ $CPOL$ $CPOL$ CH_SW1 CH_SW0 CS_OFST3 CS_OFST2 CS_OFST1 CS_OFST0 $0Fh$ TKCSOF9FH CEN CEN CEN CEN CEN CEN CEN CEN CS_OFST1 COS_OFST1 COS_OFST1 COS_OFST1 COS_OFST1 COS_OFST1 COS_OFST1 COS_OST1 COS_OST1 COS_OST1 COS_OST1 COS_OST1 COS_OST1 COS_OST1 COS_OST1 $COS_$	TKCON1	A6H	START	ACCUM2	ACCUM1	ACCUM0	AVE_DIS	TRIG_SEL	FUNC_FLG	OV	00h
TKCSCF9EHC2V_CHAC2V_CHAC2V_CHAC2V_CHAC2V_CHACAP_SUZCAP_SUZCAP_SUZCAP_SUZCAP_SUZD0hTKCSOF9FH-CPOLCH_SW1CH_SW0CS_OFST3CS_OFST2CS_OFST1CS_OFST0OFTKCSOF9FH-CPOLCH_SW1CH_SW0CS_OFST3CS_OFST2CS_OFST1CS_OFST0OFTKCSOF9FH-CPOLCNSOENCPOLDBTSYN-00hCMPCON0BDHCENCPS2TGS2TGS1TGS0VREF_ENCDS2CDS1CDS000hCEPROM CorrectImage: Correct CorrectImage	TKCON2	A7H	CAP_LP	SES_GAP2	SES_GAP1	SES_GAP0	ISLE_STA	WAIT_CPU	STA_GAP1	STA_GAP0	00h
TKCSCF9EH9EHNemNemNemNemNemNemTKCSOF9FH-CPOLCH_SW1CH_SW0CS_OFST3CS_OFST2CS_OFST1CS_OFST00FhAnalog ComperitorSumCPSCNSOENCPODBTSYN-00hCMPCON1BEH-TGS2TGS1TGS0VREF_ENCDS2CDS1CDS000hEEPROM ControlSumSu	TKADCF	9DH	INJECT	ADC_PUMP	IREF_ADJ1	IREF_ADJ0	REF_GAP	ADC_VREF2	ADC_VREF1	ADC_VREF0	00h
Analog Comparator ControlRefRefRefRefRefRefRefCMPCON0BDHCENCPSCNSOENCPODBTSYN-00hCMPCON1BEH-TGS2TGS1TGS0VREF_ENCDS2CDS1CDS000hEEPROM Control	TKCSCF	9EH	-	—	-	-	-	_	_	_	00h
CMPCON0 BDH CEN CPS CNS OEN CPO DBT SYN - 00h CMPCON1 BEH - TGS2 TGS1 TGS0 VREF_EN CDS2 CDS1 CDS0 00h EEPROM Control Co	TKCSOF	9FH	-	CPOL	CH_SW1	CH_SW0	CS_OFST3	CS_OFST2	CS_OFST1	CS_OFST0	0Fh
CMPCON1 BEH - TGS2 TGS1 TGS0 VREF_EN CDS2 CDS1 CDS0 00h	Analog Compa	rator Co	ntrol								
EEPROM Control	CMPCON0	BDH	CEN	CPS	CNS	OEN	СРО	DBT	SYN	-	00h
	CMPCON1	BEH	-	TGS2	TGS1	TGS0	VREF_EN	CDS2	CDS1	CDS0	00h
EECON 97H LOCK FUSE DENC DSCR EPGM PGMF CPF PGM 00h	EEPROM Control										
	EECON	97H	LOCK	FUSE	DENC	DSCR	EPGM	PGMF	CPF	PGM	00h

7.3 Special Function Registers Definition

7.3.1Accumulator – ACC

Table 7-4ACC Register (E0h)

Bit	Symbol	Description	Туре	Reset
acc.7~0	-	Accumulator	R/W	00h

Accumulator is used by most of the ET8051 instructions to hold the operand and to store the result of an operation. The mnemonics for accumulator-specific instructions refer to accumulator as A, not ACC.

7.3.2B Register – B

<u>Table 7-5</u>	B Register (F0h)
------------------	------------------

Bit	Symbol	Description	Туре	Reset
b.7~0	-	B register for multiplying and division instructions	R/W	00h

The B register is used during multiplying and division instructions. It can also be used as a scratch-pad register to hold temporary data.

7.3.3Program Status Word Register - PSW

The PSW register contains status bits that reflect the current state of the CPU.

Note that the Parity bit can only be modified by hardware upon the state of ACC register.

Table 7-6 PSW Register (D0h)

Bit	Symbol	Description	Туре	Reset
psw.7	су	Carry flag	R/W	0
		Carry bit in arithmetic operations and accumulator for Boolean operations.		
psw.6	ac	Auxiliary Carry flag	R/W	0
		Set if there is a carry-out from 3rd bit of Accumulator in BCD		
		operations	V	
psw.5	f0	General purpose Flag 0	R/W	0
		General purpose flag available for user		
psw.4	rs1	Register bank select control bit 1, used to select working register bank	R/W	0
psw.3	rs0	Register bank select control bit 0, used to select working register bank	R/W	0
psw.2	ov	Overflow flag	R/W	0
		Set in case of overflow in Accumulator during arithmetic operations		
psw.1	f1	General purpose Flag 1	R/W	0
		General purpose flag available for user		
psw.0	р	Parity flag	R	0
		Reflects the number of '1's in the Accumulator		
		P = '1' if Accumulator contains an odd number of '1's		
		P = '0' if Accumulator contains an even number of '1's		

The state of rs1 and rs0 bits selects the working register bank as follows:

Table 7-7 Register Bank Locations

17	N.I.I.			
	rs1	rs0	Selected Register Bank	Location
Q	0	0	Bank 0	(00H – 07H)
	0	1	Bank 1	(08H – 0FH)
	1	0	Bank 2	(10H – 17H)
	1	1	Bank 3	(18H – 1FH)

7.3.4Stack Pointer - SP

Table 7-8 SP Register (81h)

Bit	Symbol	Description	Туре	Reset

Bit	Symbol	Description	Туре	Reset
sp.7~0	-	Stack address	R/W	07h

This register points to the top of stack in internal data memory space.

It is used to store the return address of program before executing interrupt routine or subprograms. The SP is incremented before executing PUSH or CALL instruction and it is decremented after executing POP or RET(I) instruction (it always points the top of stack).

7.3.5Data Pointer – DPH, DPL

Bit	Symbol	Description	Туре	Reset
dpl.7~0	-	Data pointer low address	R/W	00h

 Table 7-9
 DPL Register (82h)

Table 7-10 DPH Register (83h)

Bit	Symbol	Description	Туре	Reset
dph.7~0	-	Data pointer high address	R/W	00h

Data Pointer Register can be accessed through DPL and DPH.

These registers are intended to hold 16-bit address in the indirect addressing mode used by MOVX (move external memory), MOVC (move program memory) or JMP (computed branch) instructions. They may be manipulated as 16-bit register or as two separate 8-bit registers. DPH holds higher byte and DPL holds lower byte of indirect address.

It is generally used to access external code or data space (e.g. MOVC A,@A+DPTR or MOV A,@DPTR respectively).

7.3.6Clock Control Register – CKCON

The contents of this register define the number of internally generated wait states that occur during read/write accesses to external data and program memory. It also controls the type of write access to either of the memory spaces.

The CKCON register is allocated in the SFR memory space when internal wait state generation is selected.

<u>Table 7-11</u>	CKCON Register (8Eh)
-------------------	----------------------

Bit	Symbol	Description	Туре	Reset

Bit	Symbol	Description		Reset
ckcon.7	-	-	R	1
ckcon.6	-	Program memory wait state control	R/W	0
ckcon.5	-			0
ckcon.4	-			0
ckcon.3	-	-	R	1
ckcon.2	-	External data memory stretch cycle control	R/W	0
ckcon.1	-			0
ckcon.0	-			0

7.3.7Timed Access Register – TA

Table 7-12 TA Register (FFh)

Bit	Symbol	Description	Туре	Reset
TA.7~0	-	The Timed Access register:	W	FFh
		The Timed Access register controls the access to protected bits.		
		To access protected bits, the user must first write AAH to the		
		TA. This must be immediately followed by a write of 55H to		
		TA. Now a window is opened in the protected bits for three		
		machine cycles, during which the user can write to these bits		

The device has a new feature, like the Watchdog Timer which is a crucial to proper operation of the system. If left unprotected, errant code may write to the Watchdog control bits resulting in incorrect operation and loss of control. In order to prevent this, the device has a protection scheme which controls the write access to critical bits. This protection scheme is done using a timed access.

In this method, the bits which are to be protected have a timed write enable window. A write is successful only if this window is active, otherwise the write will be discarded. This write enable window is open for 3 machine cycles if certain conditions are met. After 3 machine cycles, this window automatically closes. The window is opened by writing AAh and immediately 55h to the Timed Access (TA) SFR. This SFR is located at address FFh. The suggested code for opening the timed access window is

TA	REG	0FFh		;Define new register TA, located at 0C7h
	MOV	TA,	#0AAh	
	MOV	TA,	#055h	

When the software writes AAh to the TA SFR, a counter is started. This counter waits for 3 machine cycles looking for a write of 55h to TA. If the second write (55h) occurs within 3 machine cycles of the first write (AAh), then the timed access window is opened. It remains open for 3 machine cycles, during which the user may write to the protected bits. Once the window closes the procedure must be repeated to access the other protected bits.

Examples of Timed Assessing are shown below.

Example:

MOV	TA,	#0AAh
MOV	TA,	#055h
MOV	WDTCON,	#00h

7.3.8 SRST

Bit	Symbol	Description	Туре	Reset
srst.7~1	-	Reserved, should be read as 0	R/W	00h
srst.0	srst	Continuously set this bit twice involves a soft reset action,		0
		PC pointer will be reset to 0x0000, and SFR register will be		
		reset to its reset value.		

Table 7-13 SRST egister (F7h)

8 Enhanced CPU

The ET8051 is a high performance, opcode compatible core version of the industry standard 8051 micro controller.

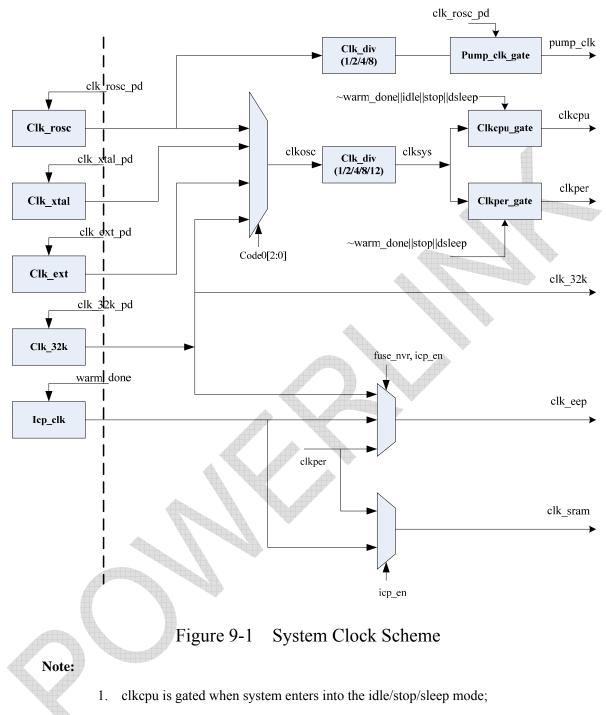
It provides software and hardware interrupts, interfaces for serial communication, timer system with compare-capture-reload resources, extended multiplication-division unit, multi-purpose I/O ports, watchdog timer and debugger interface.

The architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases. Since a cycle is aligned with memory fetch when possible, most of the 1-byte instructions are performed in a single cycle. The ET8051 uses 1 clock per cycle.

9 System Clock

9.1 Overview

The chip has a single system clock that is generated directly from one of four selectable clock sources: on-chip crystal oscillator, on-chip ceramic resonator, internal 4/8/12 MHz RC oscillator and external clock source. The clock source is selected by the Fuses. The choice of clock source also affects the start-up time after a POR, LVR or STOP event.


In addition to this system clock, internal 32 KHz RC oscillator is used for WDT and time-out delay when power on reset.

The warm-up time is configured to maximum value to ensure that user can select all expected clock source.

9.2 Clock Definition

Symbol	Description
clk_osc	Main oscillator
	Four selectable clock sources: on-chip crystal oscillator, on-chip ceramic resonator,
	internal 4/8/12 MHz RC oscillator and external clock source. The clock source is selected
	by the Fuses.
clk_32k	Sub-oscillator
	Internal 32 KHz RC oscillator is used for WDT and time-out delay when power on reset.
clk_sys	System clock
	The system clock is generated from the prescaler clock of clk_osc.
clk_cpu	CPU clock
	The CPU clock is generated from clk_sys.
clk_per	Periphery clock
	The periphery clock is generated from clk_sys.

Clock scheme within the system could see as below figure:

2. clkper is gated when system enters into the stop/sleep mode, but not gated in the idle mode;

9.3 Crystal Oscillator and Ceramic Resonator

When enabled, internal inverting oscillator amplifier is connected between XIN and XOUT for connection to an external quartz crystal or ceramic resonator. The oscillator may operate in either

high-speed or low-power mode. Low-power mode is intended for crystals of 4 MHz or less and consumes less power than the higher speed mode.

An optional $1M\Omega$ or $4M\Omega$ on-chip resistor can be selected to connect between XIN and XOUT. Two optional 15pF on-chip capacitors can be selected to connect between XIN/XOUT and GND. This resistor and capacitors can improve the startup characteristics of the oscillator especially at higher frequencies. The resistor and capacitors can be configured with the config options.

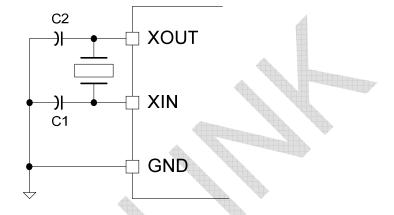


Figure 9-2 Crystal Oscillator and Ceramic Resonator

Note: C1, C2 = 0~15pF

9.4 Internal 4/8/12MHz RC Oscillator

A high accuracy internal 4/8/12MHz RC oscillator is integrated and calibrated with trimming config options.

Because EEPROM program will use the internal RC oscillator, it is always running when EEPROM is programming. When device start EEPROM program and then enter into STOP mode, the internal RC oscillator will not be disabled until EEPROM program is finished.

9.5 External Clock

When external clock source is selected by the config options, the external clock will be input from XIN. XOUT will be used for other pin functions.

9.6 Internal 32KHz RC Oscillator

The internal 32KHz RC oscillator is used for time-out delay time and WDT. When both WDT code fuse option is valid and WDTCON.WDTEN is set, it will run even device enter into STOP mode.

9.7 System Clock Output

When enable the oscillator clock out, the system clock can be output from P0.2. It will always output

1 during STOP mode.

9.8 Register Definition

9.8.1System Clock Prescaler Register - SCKCON

Bit	Symbol	Description	Туре	Reset
sckcon.7~5	-	-	R	000b
sckcon.4	-	-	R	0
sckcon.3	-	-	R	0
sckcon.2	-	System clock prescaler bits	R/TW	0
sckcon.1	-			0
sckcon.0	-			0

Table 9-1SCKCON Register (96h)

The base peripheral clock is the same as the CPU clock. It is affected by the prescaler. However, individual peripherals can have their clock further modified using the prescaler in the SCKCON register. The prescaler is a 3-bit prescaler controlled by the SCKCON.

	sckcon.2	sckcon.1	sckcon.0	Prescaler
	0	0	0	1
	0	0	1	2
4	0	1	0	4
	0	1	1	8
	1	0	0	12
	1	0	1	Reserved.
	1	1	0	It is the same as 000.
	1	1	1	

Table 9-2 System Clock Prescaler

10 Reset

10.1 Overview

During reset, all I/O Registers are set to their initial values, the port pins are set to their default mode, and the program starts execution from the Reset Vector, 0000H. The device has four sources of reset: power-on reset, low voltage reset, external reset, hardware watchdog reset.

10.2 Power-on Reset

A Power-on Reset (POR) is generated by an on-chip detection circuit. The POR detection level is nominally 0.8V (Typ.) and the POE detection level is nominally 1.4V (Typ.). The POR is activated whenever VDD is below the detection level. The POR circuit can be used to trigger the start-up reset or to detect a major supply voltage failure. The POR circuit ensures that the device is reset from power-on.

When VDD reaches the Power-on Reset threshold voltage, the start-up time delay determines how long the device is kept in POR after VDD rise. The POR signal is activated again, without any delay, when VDD falls below the POR threshold level. A Power-on Reset (i.e. a cold reset) will set the PORF flag in RSTCON. The internally generated reset can be extended beyond the power-on period by holding the RST pin active longer than the time-out.

The start-up time delay is user-configurable with the start-up time fuses and depends on the clock source. The start-up time fuses also control the length of the start-up time after a Brown-out Reset or when waking up from Power-down during internally timed mode. The start-up delay should be selected to provide enough settling time for VDD and the selected clock source. The device operating environment (supply voltage, frequency, temperature, etc.) must meet the minimum system requirements before the device exits reset and starts normal operation.

Time-out (CODE1.TOUT)	Time-out Clock	Time-out Delay				
00	2176 Clocks	66 ms				
01	640 Clocks	20 ms				
10	384 Clocks	12 ms				
11	132 Clocks	4 ms				

Table 10-1 Time-out Delay Settings

Table 10-2 Warm-up Time Settings

Clock Source	Warm-up Time (CODE1.WARM)			
	00	01	10	11

Clask Same	Warm-up Time (CODE1.WARM)							
Clock Source	00	01	10	11				
Crystal Oscillator/Ceramic Resonator	2048 Clocks	1024 Clocks	256 Clocks	8 Clocks				
Internal 8 MHz RC Oscillator	1024 Clocks	256 Clocks	64 Clocks	8 Clocks				
External Clock	8 Clocks	8 Clocks	8 Clocks	8 Clocks				

The start-up time delay includes both time-out delay and the warm-up time when device starts up from reset. When device starts up from STOP mode, only warm-up time is needed.

The RST pin may be held active externally until these conditions are met.

10.3 Low Voltage Reset

The device has an on-chip low voltage reset (LVR) circuit for monitoring the VDD level during operation by comparing it to a fixed trigger level. The trigger level for the LVR is selected by config options. The purpose of the LVR is to ensure that if VDD fails or dips while executing at speed, the system will gracefully enter reset without the possibility of errors induced by incorrect execution.

A hysteresis of trigger level is designed to prevent LVR from spike. When VDD decreases to a value below the trigger level V_{LVT} , the internal reset is immediately activated. When VDD increases above the trigger level plus about V_{HYST} of hysteresis, the device releases the internal reset after the specified time-out period has expired.

The LVR does not generate a reset output pulse except as part of a POR event.

A low voltage reset will set the LVRF flag in RSTCON.

10.4 Low Power Detect

The device has an on-chip low power detect (LPD) circuit for monitoring the VDD level during operation by comparing it to a fixed trigger level. The trigger level for the LPD is selected by config options. The purpose of the LPD is to ensure that if VDD fails or dips while executing at speed, the system will gracefully enter reset without the possibility of errors induced by incorrect execution.

The LPD does not generate a reset, it will only set the LPDF flag in RSTCON.

10.5 External Reset

The RSTB pin can function as either an active-low reset input. Entry into reset is completely asynchronous. The presence of the active reset level on the input will immediately reset the device. A glitch filter will suppress all reset input pulses of less than 50 ns. Exit from reset is synchronous. In Compatibility mode the reset pin is sampled every six clock cycles and must be held inactive for at least twelve clock cycles to deassert the internal reset. In Fast mode the reset pin is sampled every clock cycles to deassert the internal reset.

The device includes an on-chip Power-On Reset and Low Voltage Reset circuit that ensures that the device is reset from system power up. In most cases a RC startup circuit is not required on the RSTB pin, reducing system cost, and the RSTB pin may be left unconnected if a board-level reset is not present.

A external reset will set the EXRF flag in RSTCON.

10.6 Hardware Watchdog Reset

When the hardware watchdog times out, it will generate a reset pulse lasting 16 clock cycles. The WDT can be enabled by config options.

A hardware watchdog reset will set the WDRF flag in RSTCON.

10.7 Register Definition

10.7.1 Reset Control Register - RSTCON

Bit	Symbol	Description	Туре	Reset					
rstcon.7~6	-	-	R	00b					
rstcon.5	-	-	R	1					
rstcon.4	LPDF	Low Power Detect Flag	R/W	0					
		This bit is set to 1 by hardware when a LPD is active. And it							
	A.	can only be cleared by software or POR							
rstcon.3	PORF	Power-on Reset Flag	R/W	1					
		This bit is set to 1 by hardware when a POR is active. And it							
		can only be cleared by software.							
rstcon.2	LVRF	Low Voltage Reset Flag	R/W	х					
		This bit is set to 1 by hardware when a LVR is active. And it							
		can only be cleared by POR or software.							
rstcon.1	EXRF	External Reset Flag	R/W	х					
		This bit is set to 1 by hardware when an external reset is							
		active. And it can only be cleared by POR or software.							
rstcon.0	WDRF	Watchdog Reset Flag	R/W	0					
		This bit is set to 1 by hardware when a WDT reset is active.							
		And it can only be cleared by POR or software.							
		Read or write this bit can clear hardware watchdog timer if							
		WDT is enabled.							

Table 10-3	RSTCON Register (F8h)
------------	-----------------------

Note:

The 'rstcon.2' and 'rstcon.1' perhaps read out as 1'b1 when LVR/EXT_RST are enabled in CODE

configuration, that means these resets happened once, clear these flags before using the flag is recomendded.

11 Power Saving Modes

11.1 Overview

The device supports three different software selectable power-reducing modes: IDLE, STOP and SLEEP. These modes are accessed through the PCON register.

PSW types IDLE				STOP		SLEEP		
PSW blocks		Clock	Power	Clock	Power	Clock*(1)	Power* (1)	
Digital	CPU core	off	on	off	on	off	off	
	Peripheral	on	on	off	on	off	off	
Memory	EEPROM	on*(2)	on	off	on	off	off	
	IRAM	off	on 🧹	off	on	off	off	
Analog	Power supply	-	on		on	-	off	
	IRC4/8/12Mhz	on	on	off	off	off	off	
	IRC32Khz	on	on	off	off	off	off	
	Oscillator	on	on	off	off	off	off	
	ACMP	-	acmpcon0[6]	-	acmpcon0[6]	-	acmpcon0[6]	
	САР	on	on	on	on	on	on	

Table 11-1	Power Saving	Mode Type
------------	--------------	-----------

Note:

- 1. Power supply is about 1.8v (w/ 32K LIRC) or 1.2v (w/o 32K LIRC) in SLEEP mode, for Internal SRAM retention, and not be powered off actually.
- 2. The clock of EEPROM could be active even if 'cpuclk' is turnoff in IDLE mode;

11.2 IDLE Mode

Setting the IDLE bit in PCON enters IDLE mode. IDLE mode halts the internal CPU clock. The CPU state is preserved in its entirety, including the RAM, stack pointer, program counter, program status word, and accumulator. The Port pins hold the logic states they had at the time that IDLE was activated. IDLE mode leaves the peripherals running in order to allow them to wake up the CPU when an interrupt is generated. The timer and UART peripherals continue to function during IDLE. If these functions are not needed during IDLE, they should be explicitly disabled by clearing the appropriate control bits in their respective SFRs. The Low Voltage Reset is always active during IDLE.

Any enabled interrupt source or reset may terminate IDLE mode. When exiting IDLE mode with an interrupt, the interrupt will immediately be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into IDLE.

The power consumption during IDLE mode can be further reduced by prescaling down the system clock using the System Clock Prescaler. Be aware that the clock divider will affect all peripheral functions and baud rates may need to be adjusted to maintain their rate with the new clock frequency.

11.3 STOP Mode

Setting the STOP bit in PCON enters STOP mode. STOP mode stops the oscillator, disables the LVR and powers down the Flash memory in order to minimize power consumption. Only the power-on circuitry will continue to draw power during STOP. During STOP, the power supply voltage may be reduced to the RAM keep-alive voltage. The RAM contents will be retained, but the SFR contents are not guaranteed once VDD has been reduced. STOP could be exited by external reset, power-on reset, LVR reset, WDT reset or certain enabled interrupts.

Six enabled external interrupt sources could be configured to wakeup STOP mode directly: external interrupts INT0B and INT1B (only support level-activated), keyboard interrupt, analog comparator interrupt, touch key interrupt, WDT interrupt. When exiting STOP mode with an interrupt, the interrupt will immediately be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into STOP.

Note:

- 1) If set STOP and IDLE bits simultaneously, device will enters STOP mode. When device is waked up from STOP mode, both STOP and IDLE bits will be cleared by hardware.
- 2) To wake up from STOP mode, the enabled external interrupts must be active long enough for start-up time delay.
- 3) To wake up from STOP mode, RSTB pin must be active long enough for start-up time delay.

11.4 SLEEP Mode

Setting the SLEEP bit in PCON enters SLEEP mode. In SLEEP mode, reduced power supply of 1.8v to 1.2v (w/o 32K LIRC) more or less, in order to minimize power consumption but still keeping the contents stored in the IRAM, also all the other analog circuit including the Flash memory and the oscillators and Internal RC are also powered off, shut down all clocks supply.

When system entered into SLEEP mode, external interrupts INT0B and INT1B (only support level-activated), WDT interrupt, keyboard interrupt or touch key interrupt could wakeup system directly when they are enabled, and run program from the interrupt point after the system is return. Four types of reset including POR reset, LVR reset WDT reset or external reset will reset the system and run program from the start PC value.

11.5 Register Definition

11.5.1 Power Control Register - PCON

Bit	Symbol	Description	Туре	Reset
pcon.7	SMOD	Serial Port 0 baud rate select	R/W	0
		(baud rate doubler)		
pcon.6	-	-		-
pcon.5	ISR_TM	Interrupt Service Routine Test Mode flag	R/TW	0
		When set to 1, the interrupt vectors assigned to Timer 0 & 1,		
		Serial Port 0 & 1, SPI and I2C interfaces can be triggered		
		only with the use of external inputs of the core		
pcon.4	-	-	R	0
pcon.3	-	-	R	1
pcon.2	SLEEP	SLEEP mode control	R/TW	0
		Setting this bit will auto-set STOP (pcon.1) bit, and let chip		
		go into SLEEP mode. This bit is always read as 0		
pcon.1	STOP	STOP mode control	R/W	0
		Setting this bit activates STOP mode. This bit is always read		
		as 0		
pcon.0	IDLE	IDLE mode control	R/W	0
		Setting this bit activates IDLE mode. This bit is always read		
		as 0		

Table 11-2 PCON Register (87h)

12 Interrupts

12.1 Overview

The device has four priority level interrupts structure with 14 interrupt sources. Each of the interrupt sources has an individual priority bit, flag, interrupt vector and enable bit. In addition, the interrupts can be globally enabled or disabled.

12.2 Interrupt Sources

The External Interrupts INT0B and INT1B can be either edge triggered or level triggered, depending on bits IT0 and IT1. The bits IE0 and IE1 in the TCON register are the flags which are checked to generate the interrupt. In the edge triggered mode, the INTx inputs are sampled in every machine cycle. If the sample is high in one cycle and low in the next, then a high to low transition is detected and the interrupts request flag IEx in TCON is set. The flag bit requests the interrupt. Since the external interrupts are sampled every machine cycle, they have to be held high or low for at least one complete machine cycle. The IEx flag is automatically cleared when the service routine is called. If the level triggered mode is selected, then the requesting source has to hold the pin low till the interrupt is serviced. The IEx flag will not be cleared by the hardware on entering the service routine. If the interrupt continues to be held low even after the service routine is completed, then the processor may acknowledge another interrupt request from the same source.

The Timer 0, 1 and 2 Interrupts are generated by the TF0, TF1 and TF2 flags. These flags are set by the overflow in the Timer 0, Timer 1 and Timer 2. The TF0 and TF1 flags are automatically cleared by the hardware when the timer interrupt is serviced, TF2 flag should be cleared by software.

The Serial block can generate interrupt on reception or transmission. There are two interrupt sources from the Serial block, which are obtained by the RI and TI bits in the SCON SFR. These bits are not automatically cleared by the hardware, and the user will have to clear these bits by software.

All the bits that generate interrupts can be set or reset by software, and thereby software initiated interrupts can be generated. Each of the individual interrupts can be enabled or disabled by setting or clearing a bit in the IEN0 and IEN1 SFR. IEN0 also has a global enable/disable bit EA, which can be cleared to disable all interrupts.

The EEPROM write finished can generate interrupt after finished EEPROM write operation. There is one interrupt source, which is obtained by the PGMF bit in the EECON SFR. This flag is automatically cleared by the hardware when the EEPROM program finish interrupt is serviced.

The analog comparator can generate interrupt after comparator output has toggle occurs by CMPF. This flag is automatically cleared by the hardware when the ACMP interrupt is serviced.

The keyboard can generate interrupt after keyboard output has toggle occurs by KBF. This bit is automatically cleared when pressed key is released.

The capsensor can generate interrupt after capsensor output has toggle occurs by TKF. This bit is not

automatically cleared by the hardware, and the user will have to clear this bit using software.

The I2C function can generate interrupt, if EI2C and EA bits are enabled, when SI Flag is set due to a new I2C status code is generated, SI flag is generated by hardware and must be cleared by software.

The SPI function can generate interrupt, if ESPI and EA bits are enabled, when 'spif' flag is set due to a new 8-bit data frame transfer completion, the flag is generated by hardware and must be cleared by software.

The WDT function can generate interrupt, if WDTIEN and EA bits are enabled, when WDTIF flag is set due to WDT time overflow ,the flag is generated by hardware and automatically cleared by the hardware when the WDT interrupt is serviced.

The interrupt flags are sampled every machine cycle. In the same machine cycle, the sampled interrupts are polled and their priority is resolved. If certain conditions are met then the hardware will execute an internally generated LCALL instruction which will vector the process to the appropriate interrupt vector address. The conditions for generating the LCALL are;

- 1. An interrupt of equal or higher priority is not currently being serviced.
- 2. The current polling cycle is the last machine cycle of the instruction currently being execute.
- 3. The current instruction does not involve a write to IE, EIE, IPO, IPOH, IP1 or IPH1 registers and is not a RETI.

If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is repeated every machine cycle, with the interrupts sampled in the same machine cycle. If an interrupt flag is active in one cycle but not responded to, and is not active when the above conditions are met, the denied interrupt will not be serviced. This means that active interrupts are not remembered; every polling cycle is new.

The processor responds to a valid interrupt by executing an LCALL instruction to the appropriate service routine. This may or may not clear the flag which caused the interrupt. In case of Timer interrupts, the TF0, TF1 or TF2 flags are cleared by hardware whenever the processor vectors to the appropriate timer service routine. In case of external interrupts, INT0B and INT1B, the flags are cleared only if they are edge triggered. In case of Serial interrupts, the flags are not cleared by hardware. The hardware LCALL behaves exactly like the software LCALL instruction. This instruction saves the Program Counter contents onto the Stack, but does not save the Program Status Word PSW. The PC is reloaded with the vector address of that interrupt which caused the LCALL. These address of vector for the different sources are as follows:

Interrupt	Source	Vector	No.	Interrupt	Source	Vector	No.
System Reset	RST	0000H					
External Interrupt0	IE0	0003H	0	Timer0 Overflow	TF0	000BH	1
External Interrupt1	IE1	0013H	2	Timer1 Overflow	TF1	001BH	3
Serial Port Interrupt	DI or	002211	4	Timer? Overflow or	TEO	002D11	5

Table 12-1 Vector Locations for Interrupt Sources

Interrupt	Source	Vector	No.		Interrupt	Source	Vector	No.
	TI				External Reload			
I2C Interrupt	I2CF	0033H	6		Keyboard Interrupt	KBF	003BH	7
SPI Interrupt	SPIF	0043H	8		Touch Key Interrupt	TKF(ADC)	004BH	9
Timer2	T2CF	0053H	10		EE Write Finshed	PGMF	005BH	11
Capture/Compare	12CF	0055H	10	10	Interrupt	PGMF	003BH	11
Comparator Interrupt	CMPF	0063H	12		Reserved		006BH	13
Reserved		0073H	14		WDT interrupt	WDTIF	007BH	15
Reserved		0083H	16		Reserved		008BH	17
Reserved		0093H	18		Reserved		009BH	19

Execution continues from the vectored address till an RETI instruction is executed. On execution of the RETI instruction the processor pops the Stack and loads the PC with the contents at the top of the stack. The user must take care that the status of the stack is restored to what it was after the hardware LCALL, if the execution is return to the interrupted program. The processor does not notice anything if the stack contents are modified and will proceed with execution from the address put back into PC.

Note that a RET instruction would perform exactly the same process as a RETI instruction, but it would not inform the Interrupt Controller that the interrupt service routine is completed, and would leave the controller still thinking that the service routine is underway.

12.3 Priority Level Structure

The device uses a four priority level interrupt structure (highest, high, low and lowest) and supports up to 14 interrupt sources. The interrupt sources can be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve simultaneous requests having the same priority level. This hierarchy is defined as table below. This allows great flexibility in controlling and handling many interrupt sources.

Prior	ity Bits	Interment Level Drienity
IPXH	IPX	- Interrupt Level Priority
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the IPO, IPOH, IP1, and IP1H registers. An interrupt service routine in progress can

be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

As below Table summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, arbitration ranking, and whether each interrupt may wake up the CPU from STOP mode.

Source	Flag	Vector Address	Interrupt Enable Bits	Interrupt Priority	Flag Cleard By	Arbitration Ranking	STOP mode Wake-up
System Reset	RST	0000H	/	/	Software	/	Yes
External Interrupt	IE0	0003H	EX0 (IE0.0)	IP0H.0, IP0.0	Hardware	1 (highest)	Yes**
Timer0 Interrupt	TF0	000BH	ET0 (IE0.1)	IP0H.1, IP0.1	Hardware, Software	2	No
External Interrupt	IE1	0013H	EX1 (IE0.2)	IP0H.2, IP0.2	Hardware	3	Yes**
Timer1 Interrupt	TF1	001BH	ET1 (IE0.3)	IP0H.3, IP0.3	Hardware, Software	4	No
Serial Port Tx and Rx	TI&RI	0023H	ES0 (IE0.4)	IP0H.4, IP0.4	Software	5	No
Timer2 Overflow or External Reload	TF2	002BH	ET2(IE0.5)	IP0H.5, IP0.5	Software	6	No
I2C Interrupt	I2CF	0033H	EI2C (IE1.0)	IP1H.0, IP1.0	Software	7	No
Keyboard Interrupt	KBF	003ВН	EKB (IE1.4)	IP1H.4, IP1.4	Hardware, Software	8	Yes
SPI Interrupt	SPIF	0043H	ESPI(IE1.1)	IP1H.1, IP1.1	Software	9	No
Touch Key Interrupt	TKF	004BH	ETK(IE1.5)	IP1H.5, IP1.5	Hardware, Software	10	Yes
Timer2 Capture/Compare Interrupt	T2CF	0053H	ET2C(IE1.3)	IP1H.5, IP1.5	Hardware, Software	11	No
EE Write Finshed Interrupt	PGMF	005BH	EPGM (EECON.3)	IP0H.7, IP0.7	Hardware	12	No
Comparator	CMPF	0063H	ECMP	IP1H.2,	Hardware,	13	Yes*

Table 12-3 Vector location for Interrupt sources and STOP mode Wakeup

V1.5©2021

www.pmicro.com.cn

Source	Flag	Vector Address	Interrupt Enable Bits	Interrupt Priority	Flag Cleard By	Arbitration Ranking	STOP mode Wake-up
Interrupt			(IE1.2)	IP1.2	Software		
WDT Interrupt	WDTIF	007BH	EWDT	IP1H.7,	Hardware,	14 (lowest)	Yes*
			(wdtcon.5)	IP1.7	Software	14 (lowest)	105

Note:

* Only level interrupt generated from comparator could wakeup from STOP mode.

** Only low level interrupt generated from INT0 or INT1 could wakeup from STOP mode.

12.4 Response Time

The response time for each interrupt source depends on several factors, such as the nature of the interrupt and the instruction underway. For all of the 14 interrupt source signals, they are sampled at every system clock cycle and then their corresponding interrupt flags will be set or reset. These flag values are polled in the next cycle, and core responses it at the second cycle, interrupt spot is protect and 'PC' value is stored in the third cycle, then the interrupt vector is loaded into 'PC' in the forth cycle. So if an interrupt request is active and is selected as a active interrupt source according the configuration in SFR 'IEx', 'IPx', there is a minimum time of four system clock cycles between the interrupt flag being set and the interrupt service routine being executed.

A longer response time should be anticipated if any of the three conditions are not met. If a higher or equal priority is being serviced, then the interrupt latency time obviously depends on the nature of the service routine currently being executed.

12.5 Interrupt Inputs

The device has 14 interrupts source, they wire-OR together, and form one internal interrupt signal 'irq' connected to core. Only 6 of these input interrupts could be configured to wakeup the processor and resume operation when device is put into STOP or IDLE mode, they are INT0, INT1, touch key interrupt, keyboard interrupt, comparator interrupt, WDT interrupt.

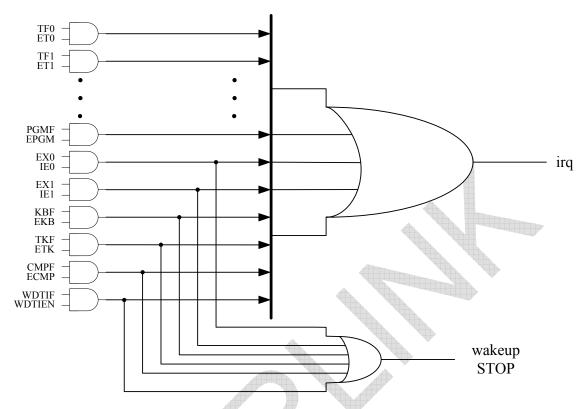


Figure 12-1 Interrupt IRQ and wakeup-STOP

Note:

- 1. 'irq' is interrupt signal to core, it could wakeup system when its in idle mode;
- 2. 'wakeup_stop' is used to wakeup system when its in stop mode;
- 3. WDT/keyboard/touch_key interrupt could wakeup system when its in sleep mode;

12.6 Register Definition

12.6.1 Interrupt Enable 0 Register – IE0

Bit	Symbol	Description	Туре	Reset
ie0.7	EA	Interrupts enable	R/W	0
		When set to $0 - all$ interrupts are disabled		
		Otherwise enabling each interrupt is done by setting the		
		corresponding interrupt enable bit		
ie0.6	-	-	R/W	0
ie0.5	ET2	Timer2 interrupt enable	R/W	0
		When et2=0 timer2 interrupt is disabled.		

Table 12-4 IE0 Register (A8h)

Bit	Symbol	Description	Туре	Reset
		When et2=1 and ea=1 timer2 interrupt is enabled.		
ie0.4	ES0	Serial Port 0 interrupt enable	R/W	0
		When es0=0 Serial Port 0 interrupt is disabled.		
		When es0=1 and ea=1 Serial Port 0 interrupt is enabled.		
ie0.3	ET1	Timer1 overflow interrupt enable	R/W	0
		When et1=0 timer0 overflow interrupt is disabled.		
		When et1=1 and ea=1 timer1 overflow interrupt is enabled.		
ie0.2	EX1	External interrupt 1 enable	R/W	0
		When ex1=0 external interrupt 1 is disabled.		
		When ex1=1 and ea=1 external interrupt 1 is enabled.		
ie0.1	ET0	Timer0 overflow interrupt enable	R/W	0
		When et0=0 timer0 overflow interrupt is disabled.	\leftarrow 4	
		When et0=1 and ea=1 timer0 overflow interrupt is enabled.		
ie0.0	EX0	External interrupt 0 enable	R/W	0
		When ex0=0 external interrupt 0 is disabled.		
		When ex0=1 and ea=1 external interrupt 0 is enabled.		

12.6.2 Interrupt Enable 1 Register – IE1

Table 12-5 IE1 Register (B8h)

Bit	Symbol	Description	Туре	Reset
ie1.7	ET2R	Timer2 external reload interrupt enable	R/W	0
		When et2r=0, timer2 external reload interrupt is disabled.		
		When et2r=1 and ea=1, timer2 external reload interrupt is		
		enabled		
ie1.6	-		-	0
ie1.5	ETK	Touch key interrupt enable	R/W	0
		When etk=0 touch key interrupt is disabled.		
		When etk=1 and ea=1 touch key interrupt is enabled.		
iel.4	EKB	Keyboard interrupt enable	R/W	0
		When ekb=0 keyboard interrupt is disabled.		
		When ekb=1 and ea=1 keyboard interrupt is enabled.		
ie1.3	ET2C	Timer2 capture and compare mode interrupt enable	R/W	0
		When et2c=0, timer2 capture and compare interrupt is		
		disabled.		
		When et2c=1 and ea=1, timer2 capture and compare		
		interrupt is enabled.		
ie1.2	ECMP	Analog comparator interrupt enable	R/W	0
		When ecmp=0 comparator interrupt is disabled.		

Bit	Symbol	Description	Туре	Reset
		When ecmp=1 and ea=1 comparator interrupt is enabled.		
ie1.1	ESPI	SPI interrupt enable	R/W	0
		When espi=0 SPI interrupt is disabled.		
		When espi=1 and ea=1 SPI interrupt is enabled.		
ie1.0	EI2C	I2C interrupt enable	R/W	0
		When ei2c=0 I2C interrupt is disabled.		
		When ei2c=1 and ea=1 I2C interrupt is enabled.		

12.6.3 Interrupt Request Control Register - IRCON

			-	
Bit	Symbol	Description	Туре	Reset
ircon.7	T2RF	Timer 2 external reload flag	R/W	0
		software clear		
ircon.6	TF2	Timer 2 overflow flag	R/W	0
		software clear		
ircon.5	TKF	Touch key interrupt flag	R/W	0
		Interrupt ack Hard self-clear, software clear		
ircon.4	KBF	Keyboard interrupt flag	R/W	0
		Interrupt disappear Hard self-clear ,software clear		
ircon.3	T2CF	Timer2 capture and compare mode interrupt flag	R/W	0
		Interrupt ack Hard self-clear, software clear		
ircon.2	CMPF	Analog comparator interrupt flag	R/W	0
		Interrupt ack Hard self-clear, software clear		
ircon.1	-		R	0
ircon.0	-	-	R	0

Table 12-6 IRCON Register (C0h)

12.6.4 Interrupt Priority 0 Register – IP0

Bit	Symbol	Description	Туре	Reset
ip0.7	PEE	EEPROM write finished interrupt priority	R/W	0
ip0.6	-	-	R/W	0
ip0.5	PT2	Timer2 interrupt priority	R/W	0
ip0.4	PS0	Serial Port 0 interrupt priority	R/W	0
ip0.3	PT1	Timer1 overflow interrupt priority	R/W	0

Table 12-7 IPO Register (A9h)

Bit	Symbol	Description	Туре	Reset
ip0.2	PX1	External interrupt 1 priority	R/W	0
ip0.1	PT0	Timer0 overflow interrupt priority	R/W	0
ip0.0	PX0	External interrupt 0 priority	R/W	0

12.6.5 Interrupt High Priority 0 Register – IP0H

Table 12-8 IPOH Register (B1h)

Bit	Symbol	Description	Туре	Reset
ip0h.7	PEEH	EEPROM write finished interrupt high priority	R/W	0
ip0h.6	-	-	R/W	0
ip0h.5	PT2H	Timer2 interrupt high priority	R/W	0
ip0h.4	PS0H	Serial Port 0 interrupt high priority	R/W	0
ip0h.3	PT1H	Timer1 overflow interrupt high priority	R/W	0
ip0h.2	PX1H	External interrupt 1 high priority	R/W	0
ip0h.1	РТОН	Timer0 overflow interrupt high priority	R/W	0
ip0h.0	PX0H	External interrupt 0 high priority	R/W	0

12.6.6 Interrupt Priority 1 Register – IP1

T-11-100	$\mathbf{ID} \mathbf{I} \mathbf{D} \mathbf{D} \mathbf{n} = \frac{1}{2} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} n$
Table 17-9	IP1 Register (B9h)
14010 12 /	

Bit	Symbol	Description	Туре	Reset
ip1.7	PWDT	WDT interrupt priority	R/W	0
ip1.6	-	-	R/W	0
ip1.5	РТК	Touch key interrupt priority	R/W	0
ip1.4	РКВ	Keyboard interrupt priority	R/W	0
ip1.3	PT2C	Timer2 capture and compare mode interrupt priority	R/W	0
ip1.2	PCMP	Analog comparator interrupt priority	R/W	0
ip1.1	PSPI	SPI interrupt priority	R/W	0
ip1.0	PI2C	I2C interrupt priority	R/W	0

12.6.7 Interrupt High Priority 1 Register – IP1H

Table 12-10 IP1H Register (C1h)

PL51T020

Bit	Symbol	Description	Туре	Reset
ip1h.7	PWDTH	WDT interrupt priority	R/W	0
ip1h.6	-	-	R/W	0
ip1h.5	РТКН	Touch key interrupt high priority	R/W	0
ip1h.4	РКВН	Keyboard interrupt high priority	R/W	0
ip1h.3	PT2CH	Timer2 capture and compare mode interrupt high priority	R/W	0
ip1h.2	РСМРН	Analog comparator interrupt high priority	R/W	0
ip1h.1	PSPIH	SPI interrupt high priority	R/W	0
ip1h.0	PI2CH	I2C interrupt high priority	R/W	0

13 External Interrupts

The INT0B and INT1B pins of the device may be used as external interrupt sources. The external interrupts can be programmed to be level-activated or transition activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx = 0, external interrupt x is triggered by a detected low at the INTx pin. If ITx = 1, external interrupt x is falling edge-triggered. In this mode if successive samples of the INTx pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then requests the interrupt.

Since the external interrupt pins are sampled once each clock cycle, an input high or low should hold for at least 2 system periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least two clock cycles, and then hold it low for at least two clock cycles to ensure that the transition is seen so that interrupt request flag IEx will be set. IEx will be automatically cleared by the CPU when the service routine is called if generated in edge-triggered mode. If the external interrupt is level-activated, the external source has to hold the requested interrupt is actually generated. Then the external source must deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated. Both INT0 and INT1 may wake up the device from the Power-down state.

14 Keyboard Interface

The device implements a keyboard interface allowing the connection of a $1 \ge n$ to $8 \ge n$ matrix keyboard. The keyboard function provides 8 configurable external interrupts, each key reuse with port1.0~port1.7.

When an interrupt condition on a pin is detected, and that pin is enabled in the keyboard control register (KBCON), the keyboard interrupt flag (KBF) is set. The KBF flag will be automatically cleared when pressed key is released. Any enabled keyboard interrupt may wake up the device from the IDLE, STOP or SLEEP mode.

User need to poll the keyboard pins to detect which key input is active.

14.1 Register Definition

14.1.1 Keyboard Interrupt Control Register – KBCON

Bit	Symbol	Description	Туре	Reset
kbcon.7~0	-	Keyboard Interrupt control bits	R/W	00h

Table 14-1 KBCON Register (BCh)

15 I/O Ports

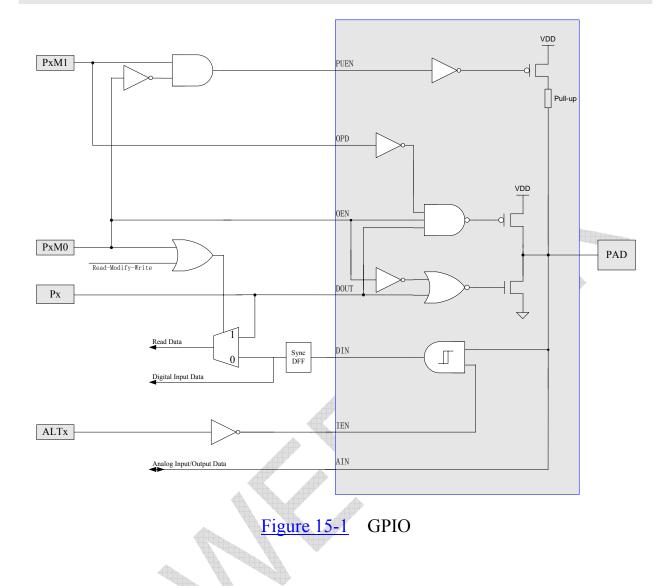
15.1 Overview

The device has three I/O ports, port 0, port 1 and port 2. All pins of I/O ports can be configured by config options and port control registers. Maximal 22 general purpose I/O ports can be set.

The port output data is saved in port latch data register Px. The port modes are configured in port mode control registers PxM0 and PxM1.

When port is configured to analog functions pin by the port alternative control register ALTx, the digital input is disabled.

Some pins are shared with alternative functions, the outside pin function has the highest priority, and the inner pin function has the lowest priority. It means that if the higher priority function is enabled, the lower priority function can't be used even when the lower priority function is also enabled.


15.2 Port Configuration

All port pins on the device may be configured in one of four modes: input only, input with pull-up, push-pull output or open-drain output. The quasi-bidirectional of standard 8051 port output is not supported.

Each port pin also has a Schmitt-triggered input for improved input noise rejection. During STOP mode all the Schmitt-triggered inputs are disabled with the exception of INT0B, INT1B, RSTB, XIN and XOUT. The keyboard alternative pins configured as a keyboard interrupt input will also remain active during STOP mode to wake-up the device. These interrupt pins should either be disabled before entering STOP mode or they should not be left floating.

	PxM0.y	PxM1.y	Port Mode				
Store	0	0	Input Only (High Impedance)				
	0 1 Input with Pull-up						
1	1	0	Push-pull Output				
1 1 Open-Drain Output							

Table 15-	Configuration Modes

15.3 Port Analog Functions

The device incorporates an analog comparator and 16-channel touch keys. In order to give the best analog performance and minimize power consumption, pins that are being used for analog functions must have both their digital outputs and digital inputs disabled.

Digital outputs are disabled by putting the port pins into the input-only mode. Digital inputs are disabled by ALTx whenever analog function pins are enabled and that pin is configured for input-only mode.

15.4 Port Read-Modify-Write

A read from a port will read either the state of the pins or the state of the port register depending on which instruction is used. Simple read instructions will always access the port pins directly.

Read-modify-write instructions, which read a value, possibly modify it, and then write it back, will

always access the port register. This includes bit write instructions such as CLR or SETB as they actually read the entire port, modify a single bit, then write the data back to the entire port.

15.5 Port Alternate Functions

Most general-purpose digital I/O pins of the device share functionality with the various I/Os needed for the peripheral units.

Port Pin	Alternate Function	ТҮРЕ	Configuration Bits
	MOSI	Digital(input)	SPCON.SPEN =1 && SPCON.MSTR =0(slave)
		Digital(output)	SPCON.SPEN =1 && SPCON.MSTR =1(master)
P0.0	PWM0*	Digital(output)	PSFT.PWM0=1 && PWMCON0.PWM0EN=1
	Т0	Digital(input)	PSFT.T0=0
	TK12*	Analog(input)	PSFT.TKCH=1 && TKCHS1.4=1
	PCL	Digital(input)	ICP mode enable
P0.1	PCL	Digital(input)	CODE1.ICD=1
	PWM1*	Digital(output)	PSFT.PWM1=1 && PWMCON0.PWM1EN=1
	T1	Digital(input)	PSFT.T1=0
	INT0B*	Digital(input)	PSFT.INT0B=1
	TK13*	Analog(input)	PSFT.TKCH=1 && TKCHS1.5=1
	CLKOUT	Digital(output)	CODE0.CLKOEN=1
	SCSB	Digital(input)	SPCON.SSDIS =0
P0.2	T2EX	Digital(input)	PSFT.T2=0
	INT1B*	Digital(input)	PSFT.INT1B=1
	TK14*	Analog(input)	PSFT.TKCH=1 && TKCHS1.6=1
P0.3	XOUT	Analog(output)	CODE0.OSCSEL=3'b01x
	SDA	Digital(IO)	I2CCON. ENS1=1
	MISO	Digital(input)	SPCON.SPEN =1 && SPCON.MSTR =1(master)
		Digital(output)	SPCON.SPEN =1 && SPCON.MSTR =0(slave)
	TXD	Digital(output)	SCON.REN=1

Table 15-2 Port Pin Alternate Function	Table 15-2 Port Pin Alternate Function	ons
--	--	-----

Port Pin	Alternate Function	ТҮРЕ	Configuration Bits
			PSFT.UART=0
	Т2СРО	Digital(output)	T2CON.T2EN=1
			PSFT.T2=0
			T2MOD<2:0>=3'b10x
	TK15*	Analog(input)	PSFT.TKCH=1 && TKCHS1.7=1
	XIN	Analog(input)	CODE0.OSCSEL=3'b0xx
	SCL	Digital(IO)	I2CCON. ENS1=1
P0.4	SCK	Digital(output)	SPCON.SPEN =1 && SPCON.MSTR =1(master)
10.4		Digital(input)	SPCON.SPEN =1 && SPCON.MSTR =0(slave)
	RXD	Digital(input)	SCON.REN=1
			PSFT.UART=0
	PDA	Digital(output)	ICP mode enable
P0.5	PDA	Digital(output)	CODE1.ICD=1
	RSTB	Analog(input)	CODE1.RST=1
	MOSI*	Digital(input)	SPCON.SPEN =1 && SPCON.MSTR=0(slave) &&
			PSFT0.SPI =1
		Digital(output)	SPCON.SPEN =1 && SPCON.MSTR=1(master)&& PSFT0.SPI =1
P1.0	PWM0	Digital(output)	PWMCON0.PWM0EN=1
	ТКО	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.0=1
			ASW0.KEY0=1
	SCSB*	Digital(input)	SPCON.SSDIS =0 && PSFT0.SPI =1
Y	PWM1	Digital(output)	PWMCON0.PWM1EN=1
P1.1	TK1	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.1=1
			ASW0.KEY1=1
P1.2	SDA*	Digital(IO)	I2CCON. ENS1 =1 && PSFT.IIC =1
	MISO*	Digital(input)	SPCON.SPEN=1 && SPCON.MSTR=1(master) &&

Port Pin	Alternate Function	ТҮРЕ	Configuration Bits
			PSFT.SPI=1
		Digital(output)	SPCON.SPEN=1 && SPCON.MSTR=0(slave) && PSFT.SPI=1
	TXD*	Digital(output)	SCON.REN=1
			PSFT.UART=1
	TK2	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 && TKCHS0.2=1
			ASW0.KEY2=1
	SCL*	Digital(IO)	I2CCON. ENS1 =1 && PSFT0.IIC=1
	SCK*	Digital(output)	SPCON.SPEN=1 && SPCON.MSTR=1(master) && PSFT0.SPI=1
		Digital(input)	SPCON.SPEN=1 && SPCON.MSTR=0(slave) && PSFT0.SPI=1
P1.3	RXD*	Digital(output)	SCON.REN=1
			PSFT.UART=1
	TK3	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.3=1
			ASW0.KEY3=1
	CMPOUT	Analog(output)	CMPCON0.CMPEN=1
	T0*	Digital(input)	PSFT.T0=1
P1.4	TK4	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.4=1
			ASW0.KEY4=1
	ADVREF	Analog(input)	ADCSEL !=00 && ADCON0.ADCEN=1
	CMPVREF	Analog(input)	CMPCON0.CMPEN=1
P1.5			CMPCON0.CMPVREF=1
	T1*	Digital(input)	PSFT.T1=1
	TK5	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.5=1

Port Pin	Alternate Function	ТҮРЕ	Configuration Bits
			ASW0.KEY5=1
	CMDN	A	
	CMPN	Analog(input)	CMPCON0.CMPEN=1
			CMPCON0.CMPVREF=0
	T2EX*	Digital(input)	PSFT.T2=1
P1.6	INT0B	Digital(input)	PSFT.INT0B=0
	TK6	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.6=1
			ASW0.KEY6=1
	СМРР	Analog(input)	CMPCON0.CMPEN=1
			CMPCON0.CMPIBG=0
	T2CPO*	Digital(output)	T2CON.T2EN=1
			PSFT.T2=1
P1.7			T2MOD<2:0>=3'b10x
	INT1B	Digital(input)	PSFT.INT1B=0
	TK7	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS0.7=1
	V		ASW0.KEY7=1
P2.0	PWM2	Digital(output)	PWMCON1.PWM2EN=1
	AD0	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.0=1
	TK8	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.0=1
			ASW1.KEY8=1
P2.1	PWM3	Digital(output)	PWMCON1.PWM3EN=1
	AD1	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.1=1
	ТК9	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.1=1

Port Pin	Alternate Function	ТҮРЕ	Configuration Bits
			ASW1.KEY9=1
P2.2	AD2	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.2=1
	TK10	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.2=1 &&
			ASW1.KEY10=1
P2.3	AD3	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.3=1
	TK11	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.3=1 && ASW1.KEY11=1
P2.4	AD4	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.4=1
	TK12	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.4=1 && PSFT.TKCH=0 && ASW1.KEY12=1
P2.5	AD5	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.5=1
	TK13	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.5=1 && PSFT.TKCH=0 && ASW1.KEY13=1
P2.6	AD6	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.6=1
	TK14	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.6=1 && PSFT.TKCH=0 && ASW1.KEY14=1
P2.7	AD7	Analog(input)	TKCON0.ADCEN=1 && TKCON1.START=1 &&
			TKCHS1.7=1
	TK15	Analog(input)	TKCON0.TKEN=1 && TKCON1.START=1 &&
			TKCHS1.7=1 && PSFT.TKCH=0 && ASW1.KEY15=1

Note: The above alternate function has high priority, when it is enabled the below alternate function will be disabled.

15.6 Register Definition

15.6.1 Port 0 Data Register – P0

Bit	Symbol	Description	Туре	Reset
p0.7~6	-	-	R	2'b0
p0.5~0	-	Data register	R/W	6'b0

Table 15-3 P0 Data Register (80h)

15.6.2 Port 0 Control Registers – P0M0/P0M1

Table 15-4 P0 Control Register 0 – P0M0 (B2h)

Bit	Symbol	Description		Туре	Reset
p0m0.7~6	-	-		R	2'b0
p0m0.5~0	-	Control register 0		R/W	6'b0

Table 15-5 P0 Control Register 1 – P0M1 (B3h)

Bit	Symbol	Description	Туре	Reset
p0m1.7~6	-	-	R	2'b0
p0m1.5~0	-	Control register 1	R/W	6'b0

15.6.3 Port 1 Data Register - P1

Table 15-6 P1 Data Register (90h)

Bit	Symbol	Description	Туре	Reset
p1.7~0	-	Data register	R/W	00h

15.6.4 Port 1 Control Registers – P1M0/P1M1

Table 15-7 P1 Control Register 0 – P1M0 (B4h)

Bit	Symbol	Description	Туре	Reset

Bit	Symbol	Description	Туре	Reset
p1m0.7~0	-	Control register 0	R/W	00h

Table 15-8 P1 Control Register 1 – P1M1 (B5h)

Bit	Symbol	Description	Туре	Reset
p1m1.7~0	-	Control register 1	R/W	00h

15.6.5 Port 2 Data Register – P2

Table 15-9 P2 Data Register (A0h)

Bit	Symbol	Description	Туре	Reset
p2.7~0	-	Data register	R/W	00h

15.6.6 Port 2 Control Registers – P2M0/P2M1

Table 15-10 P2 Control Register 0 – P2M0 (B6h)

Bit	Symbol	Description	Туре	Reset
p2m0.7~0	-	Control register 0	R/W	00h

Table 15-11 P2 Control Register 1 – P2M1 (B7h)

Bit	Symbol	Description	Туре	Reset
p2m1.7~0	-	Control register 1	R/W	00h

15.6.7 Port Analog Switch Registers – ASW0/ASW1

The digital input enable of port1/port2 could be closed or opened accroding to configuration bit of ASW0/ASW1, one bit of asw corresponding to one pad, for example, set asw0.7 will close port1.7 digital input.

Table 15-12 Port Analog Switch Register 0 – ASW0 (ACh)

Bit	Symbol	Description	Туре	Reset	
asw0.7~0	-	Analog switch register 0, control port1.7~0	R/W	00h	
Table 15-13 Port Analog Switch Register 1 – ASW1 (ADh)					
D!4	Cl1	Description	There a	Deset	

BitSymbolDescriptionTypeReset

Bit	Symbol	Description	Туре	Reset
asw1.7~0	-	Analog switch register 1, control port2.7~0	R/W	00h

15.6.8 Port shift Register – PSFT0

Bit	Symbol	Description	Туре	Reset
psft0.7	SPI	SCSB/SCK/MISO/MOSI shift control bit	R/W	1'b0
psft0.6	I2C	SCL/SDA shift control bit	R/W	1'b0
psft0.5	UART	RXD/TXD shift control bit	R/W	1'b0
psft0.4	INT1B	INT1B shift control bit	R/W	1'b0
psft0.3	INT0B	INT0B shift control bit	R/W	1'b0
psft0.2	T2	T2EX/T2CPO shift control bit	R/W	1'b0
psft0.1	T1	Timer 1 input shift control bit	R/W	1'b0
psft0.0	Т0	Timer 0 input shift control bit	R/W	1'b0

Table 15-14 Port Shift 0 Register (AEh)

15.6.9 Port shift Register – PSFT1

Table 15-15 Port Shift 1 Register (AFh)

Bit	Symbol	Description	Туре	Reset
psft 1.7~4	-	-	R	4'b0
psft 1.3	KEYB	Keyboard 7~0 shift control bit	R/W	1'b0
psft 1.2	ТКСН	Touch Key channel 15~12 shift control bit	R/W	1'b0
psft 1.1	PWM1	PWM1 shift control bit	R/W	1'b0
psft 1.0	PWM0	PWM0 shift control bit	R/W	1'b0

16 Timer 0 and Timer 1

16.1 Overview

The device has two 16-bit Timer/Counters, Timer 0 and Timer 1.

In the timer mode, the Timer 0/1 is incremented at each active positive edge of clock which is pre-scale of system clock, the pre-scale bits store in the TCON register.

In the counter mode, the Timer 0/1 is incremented when the falling edge is detected at the corresponding input pin – "t0" for Timer 0, "t1" for Timer 1. Since it takes 2 clock cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 clock cycle.

Four operating modes can be selected for Timer 0/1. Two Special Function Registers: tmod and tcon are used to select the appropriate mode.

16.2 Mode 0 and Mode 1

In mode 0, Timer 0 is configured as a 13-bit register ("t10" = 5 bits, "th0" = 8 bits). The upper 3 bits of "t10" are unchanged and should be ignored.

In mode 1, Timer 0 is configured as a 16- bit register.

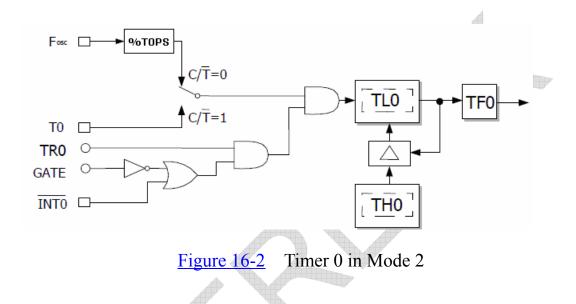
In mode 0, Timer 1 is configured as a 13-bit register ("t11" = 5 bits, "th1" = 8 bits). The upper 3 bits of "t11" are unchanged and should be ignored.

In mode 1, Timer 1 is configured as a 16- bit register.

Timer 1 in Mode 0 or Mode 1 are the same as Timer 0, all have 13-bit prescaler.

The timer clock source is controlled by TCKCON.TPSx.




Figure 16-1 Timer 0 in Mode 0 and 1

16.3 Mode 2

In this mode the Timer 0 and Timer 1 are configured as an 8-bit register with auto-reload.

Timer 1 in Mode 2 are the same as Timer 0.

The timer clock source is controlled by TCKCON.TPSx.

16.4 Mode 3

In mode 3, Timer 0 is configured as one 8-bit timer/counter and one 8-bit timer.

When Timer 0 works in mode 3, Timer 1 can still be used in other mode by the serial port as a baud rate generator, or application not requiring an interrupt from Timer 1.

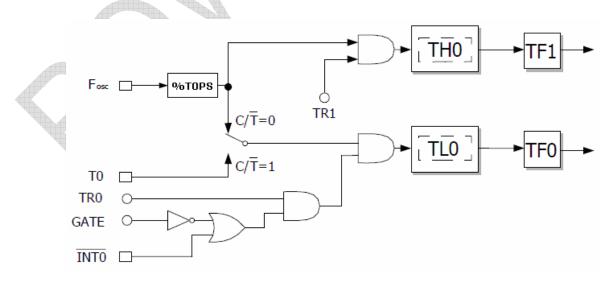


Figure 16-3 Timer 0 in Mode 3

16.5 Register Definition

16.5.1 Timer/Counter Control Register - TCON

Bit	Symbol	Description	Туре	Reset
tcon.7	tf1	Timer 1 overflow flag	R/W	0
		Bit set by hardware when Timer1 overflows. This flag can		
		be cleared by software and is automatically cleared when	$\mathbb{P} riangle$	
		interrupt is processed.		
tcon.6	tr1	Timer1 Run control	R/W	0
		If cleared, Timer 1 stops.		
tcon.5	tf0	Timer 0 overflow flag	R/W	0
		Bit set by hardware when Timer 0 overflows. This flag can		
		be cleared by software and is automatically cleared when		
		interrupt is processed.		
tcon.4	tr0	Timer 0 Run control	R/W	0
		If cleared, Timer 0 stops.		
tcon.3	ie1	External interrupt 1 flag	R/W	0*
		Set by hardware, when external interrupt int1 (edge/level,		
		depending on settings) is observed. Cleared by hardware		
	<u></u>	when interrupt is processed.		
tcon.2	it1	External interrupt 1 type control	R/W	0
		If set, external interrupt 1 is activated at falling edge on		
		input pin. If cleared, external interrupt 1 is activated at low		
		level on input pin.		
tcon.1	ie0	External interrupt 0 flag	R/W	0*
		Set by hardware, when external interrupt int0 (edge/level,		
		depending on settings) is observed. Cleared by hardware		
The second secon		when interrupt is processed.		
tcon.0	it0	External interrupt 0 type control	R/W	0
		If set, external interrupt 0 is activated at falling edge on		
		input pin. If cleared, external interrupt 0 is activated at low		
		level on input pin.		

Table 16-1 TCON Register (88h)

Note:

After power on, the register perhaps read out as '0Ah' when the INT0B/INT1B port is input floating, that means there are interrupt flags for INT0B/INT1B, if happenning, clear these flags before using the INT0B/INT1B interrupt is strongly recommended;

PL51T020

16.5.2 Timer Mode Register - TMOD

Bit	Symbol	Description	Туре	Reset
tmod.7	Gate	Timer 1 gate control	R/W	0
		If set, enables external gate control (pin "int(1)") for		
		Counter 1. When "int(1)" is high, and "tr1" bit is set (Table		
		18), the Counter 1 is incremented every falling edge on "t1"		
		input pin		
tmod.6	c/t	Timer 1 counter/timer select	R/W	0
		Selects Timer or Counter operation. When set to 1, a		
		Counter operation is performed, when cleared to 0, the		
		Timer/Counter 1 will function as a Timer.		
tmod.5	ml	Timer 1 mode	R/W	0
tmod.4	m0	Selects mode for Timer/Counter 1, as shown in table below.	R/W	0
tmod.3	Gate	Timer 0 gate control	R/W	0
		If set, enables external gate control (pin "int(0)") for		
		Counter 0. When "int(0)" is high, and "tr0" bit is set (Table		
		18), the Counter 0 is incremented every falling edge on "t0"		
		input pin		
tmod.2	c/t	Timer 0 counter/timer select	R/W	0
		Selects Timer or Counter operation. When set to 1, a		
		Counter operation is performed, when cleared to 0, the		
		Timer/Counter 0 will function as a Timer.		
tmod.1	m1 🥠	Timer 0 mode	R/W	0
tmod.0	m0	Selects mode for Timer/Counter 0, as shown in table below.	R/W	0

Table 16-2 TMOD Register (89h)

Table 16-3 Timers/Counters Modes

M1	M0	Mode	Function
0	0	Mode 0	13-bit Counter/Timer, with 5 lower bits in tl0 (tl1) register and 8 bits in th0 (th1) register
4	A.		(for Timer 0 or Timer 1, respectively). Note, that unlike in 80C51, the 3 high-order bits
	T.		of tl0 (tl1) are zeroed whenever Mode 0 is enabled.
0	1	Mode 1	16-bit Counter/Timer.
1	0	Mode 2	8-bit auto-reload Counter/Timer. The reload value is kept in th0 (th1), while tl0 (tl1) is
			incremented every machine cycle. When tl0 (tl1) overflows, a value from th0 (th1) is
			copied to tl0 (tl1).
1	1	Mode 3	For Timer1: Timer1 is stopped.
			For Timer0: Timer 0 acts as two independent 8 bit Timers/Counters – tl0, th0.
			- tl0 uses the Timer0 control bits and sets tf0 flag on overflow

M1	M0	Mode	Function
			- th0 operates as timer1. It is enabled by tr1 bit and sets tf1 flag on overflow.

16.5.3 Timer Clock Prescaler Register - TCKCON

Bit	Symbol	Description	Туре	Reset
tckcon.7	-	-	R	0
tckcon.6	t2ps2	Timer 2 Prescaler selection	R/W	1
tckcon.5	t2ps1		R/W	0
tckcon.4	t2ps0		R/W	0
tckcon.3	t1ps1	Timer 1 Prescaler selection	R/W	1
tckcon.2	t1ps0		R/W	1
tckcon.1	t0ps1	Timer 0 Prescaler selection	R/W	1
tckcon.0	t0ps0		R/W	1

Table 16-4 TCKCON Register (8Fh)

Table 16-5 Timer 2 Clock Prescaler Selection

T2PS2	T2PS1	T2PS0	Timer 2 Clock Prescaler Selection
0	0	0	RSV
0	0	1	clk_sys/2
0	1	0	clk_sys/4
0	1	1	clk_sys/8
1	0	0	clk_sys/12
1	0	1	clk_sys/16
1	1	0	clk_sys/32
1	1	1	clk_sys/128
	0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1

Table 16-6 Timer 1/0 Clock Prescaler Selection

T1PS1	T1PS0	Timer 1 Clock Prescaler	T0PS1	T0PS0	Timer 0 Clock Prescaler
0	0	RSV	0	0	RSV
0	1	clk_sys/4	0	1	clk_sys/4
1	0	clk_sys/8	1	0	clk_sys/8
1	1	clk_sys/12	1	1	clk_sys/12

16.5.4 Timer 0 Registers – TH0/TL0

Table 16-7 TH0 Register (8Ch)

Bit	Symbol	Description	Туре	Reset
th0.7~0	-	Timer 0 higher byte	R/W	00h

Table 16-8 TL0 Register (8Ah)

Bit	Symbol	Description	Туре	Reset
tl0.7~0	-	Timer 0 lower byte	R/W	00h

16.5.5 Timer 1 Registers – TH1/TL1

Table 16-9 TH1 Register (8Dh)

Bit	Symbol	Description	Туре	Reset
th1.7~0	-	Timer 1 higher byte	R/W	00h

Table 16-10 TL1 Register (8Bh)

Bit	Symbol	Description	Туре	Reset
tl1.7~0	-	Timer 1 lower byte	R/W	00h

17 Timer 2

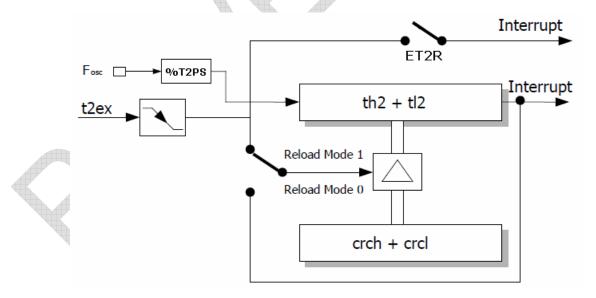
17.1 Overview

The device includes a 16-bits Timer with Compare/Capture and PWM.

17.2 Timer Function

The Timer 2 can operate as 16-bits timer.

17.2.1 Timer Mode


In this mode, the count rate is derived from the prescaler of system clock. The prescaler mode is controlled by TCKCON.T2PS. Set T2CON.T2EN to start timer counting.

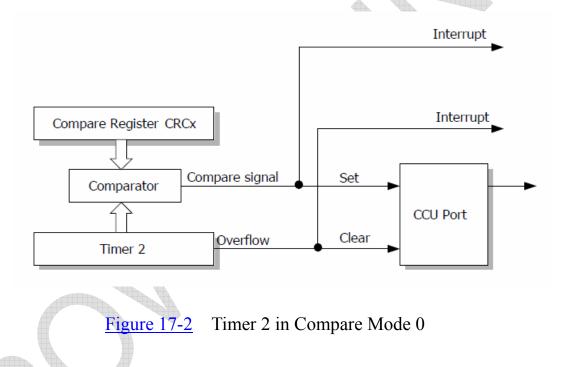
17.2.2 Timer 2 Reload Mode

A 16-bits reload from the Timer2 Compare/Capture registers can be executed in two reload modes:

- Mode 0: Reload signal is generated by Timer 2 overflow (auto reload)

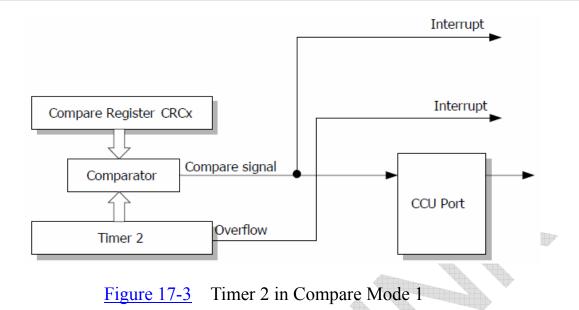
- Mode 1: Reload signal is generated by negative transition at the corresponding input pin T2EX.

Figure 17-1 Timer 2 in Reload Mode


17.3 Compare Function

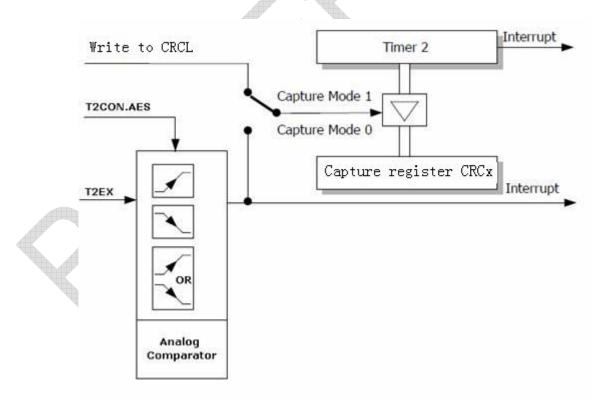
The Compare/Capture consists of one 16-bits Timer 2 compare data register. The register can be configured to work in comparator mode. In this mode the value stored in register is compared with the contents of the Timer2. The comparators outputs drive the T2CPO pin, where the T2CPO is output of the comparator associated with the register CRCH/CRCL.

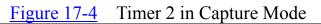
There are two compare modes selected by T2CON.T2CM.


17.3.1 Compare Mode 0

In mode 0, when the value in Timer 2 equals the value of the compare register, the comparator output changes from low to high. It goes back low on timer 2 overflow.

17.3.2 Compare Mode 1


In compare mode 1, the transition of the output signal can be determined by software. A Timer 2 overflow causes no output change. In this mode both transitions of output signal can be controlled. Figure below shows a functional diagram of a register/port configuration in compare mode 1. In compare mode 1 the value is written first to the "Shadow Register (p0.3/p1.7)", and when the compare signal goes active this value is transferred to the output register.



17.4 Capture Function

The 16-bits CRCH/CRCL register can be configured to work in capture mode.

In this mode the actual timer/counter contents are saved into the CRCH/CRCL register upon an external event (mode 0) or a software write operation (mode 1).

17.4.1 Capture Mode 0

In mode 0 capturing of Timer 2 contents is executed when rising edge, falling edge, toggle edge on T2EX or analog comparator output trigger depending on the T2CON.AES.

The timer 2 contents will be latched into appropriate capture register CRCH/CRCL. In this mode no interrupt request will be generated.

17.4.2 Capture Mode 1

In mode 1 capture of Timer 2 is caused by any write into the low-ordered byte of the dedicated capture register. The value written to capture register is irrelevant for this function. The Timer 2 contents will be latched into appropriate capture register CRCH/CRCL. In this mode no interrupt request will be generated.

17.5 PWM Function

The 16-bits CRCH/CRCL registers can be configured for 8-bit PWM mode.

In PWM mode, TL2 will be used as PWM period register, CRCL will be used as PWM duty register, and TH2 will be used as PWM counter.

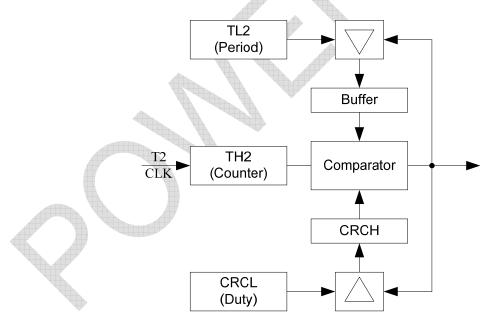


Figure 17-5 Timer 2 in PWM Mode

17.6 Register Definition

17.6.1 Timer 2 Control Register – T2CON

Bit	Symbol	Description	Туре	Reset
t2con.7	t2en	Timer 2 enable	R/W	0
		0 – Timer/Compare/Capture/PWM mode disabled		
		1 – Timer/Compare/Capture/PWM mode enabled		
t2con.6	aes1	Active edge selection	R/W	0
t2con.5	aes0	For Timer 2 Compare/Capture/PWM mode	R/W	0
t2con.4	t2r1	Timer 2 reload mode selection	R/W	0
t2con.3	t2r0	0x – reload disabled		0
		10 – Mode 0		
		11 – Mode 1		
t2con.2	t2cm	Timer 2 compare mode selection	R/W	0
		0 – Mode 0		
		1 – Mode 1		
t2con.1	-	-	R	0
t2con.0	-	-	R	0

Table 17-1 T2CON Register (C8h)

Table 17-2 T2 Active Edge Selection

				Alimital Valimita.	
	AES1	AES0	Compare Mode	Capture Mode	PWM Mode
	0	0		Falling Edge	CCP overflow output low
				V	Timer 2 Overflow output high
	0		J J	Rising Edge	CCP overflow output high
					Timer 2 Overflow output low
<u></u>	1	0	-	Toggle Edge	-
	1	1	-	Analog Comparator	-

17.6.2 Timer 2 Mode Register – T2MOD

Bit	Symbol	Description	Туре	Reset
t2mod.7~3	-	-	R	0
t2mod.2	-	Timer 2 Compare/Capture mode selection	R/W	0
t2mod.1	-		R/W	0
t2mod.0	-		R/W	0

Table 17-3 T2MOD Register (C9h)

T2MOD.2	T2MOD.1	T2MOD.0	Timer 2 Mode
0	0	0	Timer mode
0	0	1	Capture mode 0
0	1	0	Capture mode 1
0	1	1	Compare mode, disable output
1	0	0	Compare mode, enable output to T2CPO
1	0	1	PWM output to T2CPO
1	1	0	Timer mode
1	1	1	Timer mode

Table 17-4 Timer 2 Compare/Capture Mode Selection

17.6.3 Timer 2 Compare/Reload/Capture/PWM Registers – CRCH/CRCL

Table 17-5 CRCH Register (CBh)

Bit	Symbol	Description		Reset
crch.7~0	-	Timer 2 Compare/Reload/Capture/PWM Register	R/W	00h

Table 17-6 CRCL Register (CAh)

Bit	Symbol	Description 7		Reset
crcl.7~0	-	Timer 2 Compare/Reload/Capture/PWM Register	R/W	00h

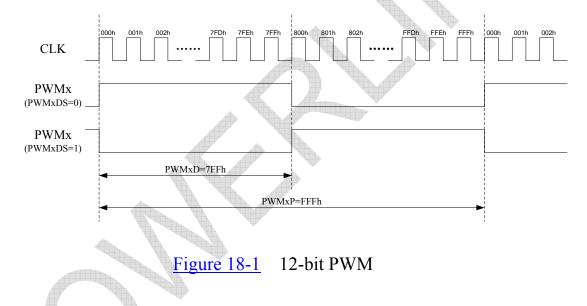
17.6.4 Timer 2 Registers – TH2/TL2

Table 17-7 TH2 Register (CDh)

Bit	Symbol	Description	Туре	Reset
th2.7~0	-	Timer 2 higher byte	R/W	00h

Table 17-8 TL2 Register (CCh)

Bit	Symbol	Description	Туре	Reset
tl2.7~0	-	Timer 2 lower byte	R/W	00h


18 PWM0/1/2/3

18.1 Overview

The device includes four 12-bit pulse width modulation (PWM) output. The SFR PWMCON0/1 is PWM mode control register, the SFRs PWMxDH/PWMxDL are PWM duty cycle control registers, and the SFRs PWMxPH/PWMxPL are PWM period cycle control registers.

In PWM mode, when set the duty cycle control registers or set the period cycle control registers, the high byte register should be set firstly, and then set the low byte register. Once the low byte register is set, the data will be loaded and PWM will start working.

PWM can work in IDLE mode, and be disabled in STOP mode.

18.2 Register Definition

18.2.1 PWM Control Register – PWMCON0

Bit	Symbol	Description	Туре	Reset
pwmcon0.7	pwmlen	PWM1 enable	R/W	0
pwmcon0.6	pwm0en	PWM0 enable	R/W	0
pwmcon0.5	pwm1ds	PWM1 duty cycle mode selection	R/W	0
		0 – normal duty cycle mode		

Table 18-1 PWMCON0 Register (FAh)

Bit	Symbol	Description	Туре	Reset
		1 – negative duty cycle mode		
pwmcon0.4	pwm0ds	PWM0 duty cycle mode selection	R/W	0
		0 – normal duty cycle mode		
		1 – negative duty cycle mode		
pwmcon0.3	pwm1ps1	PWM1 clock prescaler selection	R/W	0
pwmcon0.2	pwm1ps0		R/W	0
pwmcon0.1	pwm0ps1	PWM0 clock prescaler selection	R/W	0
pwmcon0.0	pwm0ps0		R/W	0

Table 18-2 PWMCON1 Register (F9h)

Bit	Symbol	Description	Туре	Reset
pwmcon1.7	pwm3en	PWM3 enable	R/W	0
pwmcon1.6	pwm2en	PWM2 enable	R/W	0
pwmcon1.5	pwm3ds	PWM3 duty cycle mode selection	R/W	0
		0 – normal duty cycle mode		
		1 – negative duty cycle mode		
pwmcon1.4	pwm2ds	PWM2 duty cycle mode selection	R/W	0
		0 – normal duty cycle mode		
		1 – negative duty cycle mode		
pwmcon1.3	pwm3ps1	PWM3 clock prescaler selection	R/W	0
pwmcon1.2	pwm3ps0			0
pwmcon1.1	pwm2ps1	PWM2 clock prescaler selection	R/W	0
pwmcon1.0	pwm2ps0		R/W	0

Table 18-3 PWM Prescaler Selection

PWMxPS1	PWMxPS0	PWMx Clock Prescaler Selection
0	0	clk_sys/1
0	1	clk_sys/2
1	0	clk_sys/4
1	1	clk_sys/8

18.2.2 PWM0 Period Registers – PWM0PH/PWM0PL

Table 18-4 PWM0PH Register (FCh)

Bit	Symbol	Description	Туре	Reset

Bit	Symbol	Description	Туре	Reset
pwm0ph.7~4	-	-	R	4'b0
pwm0ph.3~0	-	PWM0 period cycle register higher byte	R/W	4'b0

Table 18-5 PWM0PL Register (FBh)

Bit	Symbol	Description	Туре	Reset
pwm0pl.7~0	-	PWM0 period cycle register lower byte	R/W	00h

18.2.3 PWM0 Duty Registers – PWM0DH/PWM0DL

Table 18-6 PWM0DH Register (FEh)

Bit	Symbol	Description	Туре	Reset
pwm0dh.7~4	-	-	R	4'b0
pwm0dh.3~0	-	PWM0 duty cycle register higher byte	R/W	4'b0

Table 18-7 PWM0DL Register (FDh)

Bit	Symbol	Description	Туре	Reset
pwm0dl.7~0	-	PWM0 duty cycle register lower byte	R/W	00h

18.2.4 PWM1 Period Registers – PWM1PH/PWM1PL

Table 18-8 PWM1PH Register (F4h)

Bit	Symbol	Description	Туре	Reset
pwm1ph.7~4		-	R	4'b0
pwm1ph.3~0	-	PWM1 period cycle register higher byte	R/W	4'b0

Table 18-9 PWM1PL Register (F3h)

Bit	Symbol	Description	Туре	Reset
pwm1pl.7~0	-	PWM1 period cycle register lower byte	R/W	00h

18.2.5 PWM1 Duty Registers – PWM1DH/PWM1DL

Table 18-10 PWM1DH Register (F6h)

Bit	Symbol	Description	Туре	Reset
pwm1dh.7~4	-	-	R	4'b0

Bit	Symbol	Description	Туре	Reset
pwm1dh.3~0	-	PWM1 duty cycle register higher byte	R/W	4'b0

Table 18-11 PWM1DL Register (F5h)

Bit	Symbol	Description	Туре	Reset
pwm1dl.7~0	-	PWM1 duty cycle register lower byte	R/W	00h

18.2.6 PWM2 Period Registers – PWM2PH/PWM2PL

Table 18-12 PWM2PH Register (E9h)

Bit	Symbol	Description	Туре	Reset
pwm2ph.7~4	-	-	R	4'b0
pwm2ph.3~0	-	PWM2 period cycle register higher byte	R/W	4'b0

Table 18-13 PWM2PL Register (E8h)

Bit	Symbol	Description	Туре	Reset
pwm2pl.7~0	-	PWM2 period cycle register lower byte	R/W	00h

18.2.7 PWM2 Duty Registers – PWM2DH/PWM2DL

Table 18-14 PWM2DH Register (EBh)

Bit	Symbol	Description		Reset
pwm2dh.7~4	-		R	4'b0
pwm2dh.3~0		PWM2 duty cycle register higher byte	R/W	4'b0

Table 18-15PWM2DL Register (EAh)

Bit	Symbol	Description		Reset
pwm2dl.7~0	-	PWM2 duty cycle register lower byte	R/W	00h

18.2.8 PWM3 Period Registers – PWM3PH/PWM3PL

Table 18-16 PWM3PH Register EDh)

Bit	Symbol	Description		Reset
pwm3ph.7~4	-	-	R	4'b0
pwm3ph.3~0	-	PWM3 period cycle register higher byte	R/W	4'b0

PL51T020

Table 18-17 PWM3PL Register (ECh)

Bit	Symbol	Description 7		Reset
pwm3pl.7~0	-	PWM3 period cycle register lower byte	R/W	00h

18.2.9 PWM3 Duty Registers – PWM3DH/PWM3DL

Table 18-18 PWM3DH Register (EFh)

Bit	Symbol	Description	Туре	Reset
pwm3dh.7~4	-	-	R	4'b0
pwm3dh.3~0	-	PWM3 duty cycle register higher byte	R/W	4'b0

Table 18-19 PWM3DL Register (EEh)

Bit	Symbol	Description		Reset
pwm3dl.7~0	-	PWM3 duty cycle register lower byte	R/W	00h

19 Watchdog Timer

The watchdog timer is an 18-bit counter The device has a watchdog timer (WDT). It is used to provide the system supervision in case of software or hardware upset. If the software is not able to refresh the WDT before it is time-out, an internal reset is generated. Software can access (read or write) the RSTCON.WDRF to reset the WDT counter and re-open a WDT window.

19.1 Register Definition

19.1.1 WDT Control Register – WDTCON

Bit	Symbol	Description	Туре	Reset
wdtcon.7	wdten	WDT enable	R/TW	0
		0 – disabled		
		1 – enabled		
wdtcon.6	-	-	R	0
wdtcon.5	wdtien	WDT interrupt enable	R/W	0
wdtcon.4	wdtif	WDT interrupt flag, when enabled, the flag indicating the	R/W	0
		WDT timeout reset will come after about 256 periods of		
		clk_32k		
wdtcon.3	wdtps3	WDT prescaler selection	R/TW	0
wdtcon.2	wdtps2		R/TW	0
wdtcon.1	wdtps1		R/TW	0
wdtcon.0	wdtps0		R/TW	0

Table 19-1 WDTCON Register (86h)

Table 19-2 WDT Prescaler Selection

	WDTPS3	WDTPS2	WDTPS1	WDTPS0	Time-out Cycles	Time-out (Typ.)
4	0	0	0	0	512	16ms
	0	0	0	1	1024	31ms
	0	0	1	0	2048	63ms
	0	0	1	1	4096	125ms
	0	1	0	0	8192	250ms
	0	1	0	1	16384	500ms
	0	1	1	0	32768	1.0s
l	0	1	1	1	65536	2.0s
	1	0	0	0	131072	4.0s

WDTPS3	WDTPS2	WDTPS1	WDTPS0	Time-out Cycles	Time-out (Typ.)
1	0	0	1	262144	8.0s
1	0	1	0	Reserved	Reserved
1	0	1	1	Reserved	Reserved
1	1	0	0	Reserved	Reserved
1	1	0	1	Reserved	Reserved
1	1	1	0	Reserved	Reserved
1	1	1	1	Reserved	Reserved

20 UART

The Serial provides a flexible full-duplex synchronous/asynchronous receiver/transmitter. It can operate in four modes (one synchronous and three asynchronous). The Serial is buffered at the receive side, i.e. it can revive new data while the previously received is not damaged in the receive register until the completion of the 2nd transfer. The Serial is fully compatible with the standard 8051 serial channel.

The transmit register and the receive buffer are both addressed as SBUF Special Function Register. However any write to SBUF will be to the transmit register, while a read from SBUF will be from the receiver buffer register.

20.1 Mode 0

In mode 0 the Serial Port 0 operates as synchronous transmitter/receiver. The TXD outputs the shift clock. The RXD outputs data and inputs data. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the main clock frequency. Reception is started by setting the SCON.REN, and clearing the SCON.RI. Transmission is started by writing data to SBUF register.

20.2 Mode 1

In mode 1 the Serial Port 0 operates as asynchronous transmitter/receiver with 8 data bits and programmable baud rate. Additionally the baud rate can be doubled with the use of the PCON.SMOD.

Transmission is started by writing to the SBUF register. The TXD pin outputs data. The first bit transmitted is a start bit (always 0), then 8 bits of data proceed, after which a stop bit (always 1) is transmitted.

The RXD pin inputs data. When reception starts, the Serial Port synchronizes with the falling edge detected at pin RXD. Input data are available after completion of the reception in the SBUF register, and the value of stop bit is available as the SCON.RB8. During the reception, the SBUF and SCON.RB8 remain unchanged until the completion.

20.3 Mode 2

In mode 2 the Serial Port operates as asynchronous transmitter/receiver with 9 data bits, and baud rate fixed to 1/32 or 1/64 of system clock, depending on the setting of PCON.SMOD. Transmission is started by writing to the SBUF register. The TXD pin outputs data. The first bit transmitted is a start bit (always 0), then 9 bits of data proceed where the 9th is taken from bit SCON.TB8 after which a stop bit (always 1) is transmitted.

The RXD pin inputs data. When reception starts, the Serial Port synchronizes with the falling edge detected at pin RXD. Input data are available after completion of the reception in the SBUF register, and the 9th bit is available as the SCON.RB8. During the reception, the SBUF and SCON.RB8 remain

unchanged until the completion.

20.4 Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3 Timer 1 can be used to specify the baud rate.

In mode 3 the Serial Port operates as asynchronous transmitter/receiver with 9 data bits and programmable baud rate. Additionally the baud rate can be doubled with the use of the PCON.SMOD

Transmission is started by writing to the SBUF register. The TXD pin outputs data. The first bit transmitted is a start bit (always 0), then 9 bits of data proceed where the 9th is taken from bit SCON.TB8, after which a stop bit (always 1) is transmitted.

The RXD pin inputs data. When reception starts, the Serial Port synchronizes with the falling edge detected at pin RXD. Input data are available after completion of the reception in the SBUF register, and the 9th bit is available as the SCON.RB8. During the reception, the SBUF and SCON.RB8 remain unchanged until the completion.

20.5 Baud Rate

The baud rate for Serial Port working in mode 1 or mode 3:

for bd (adcon.7) = 0:
baud rate =
$$\frac{2^{SMOD} * Fclk}{32} * (Timer 1 overflow rate)$$

20.6 The Serial Port Multiprocessor Communication

The feature of receiving 9 bits in Modes 2 and 3 of Serial Interface 0 can be used for multiprocessor communication.

When the SCON.SM2 is set, the receive interrupt is generated only when the 9th received bit (SCON.RB8) is 1. Otherwise, no interrupt is generated upon reception.

To utilize this feature to multiprocessor communication, the slave processors have their SCON.SM2 bit set to 1. The master processor transmits the slave's address, with the 9th bit set to 1, causing reception interrupt in all of the slaves. The slave processors' software compares the received byte with their network address. If there is a match, the addressed slave clears its SCON.SM2 and the rest of the message is transmitted from the master with the 9th bit set to 0. The other slaves keep their SCON.SM2 set to 1 so that they ignore the rest of the message sent by the master.

20.7 Register Definition

20.7.1 Serial Port Control Register – SCON

Bit	Symbol	Description	Туре	Reset
s0con.7	sm0	Serial Port 0 mode select	R/W	0
s0con.6	sm1		R/W	0
s0con.5	sm2	Multiprocessor communication enable	R/W	0
s0con.4	ren	Serial reception enable If set HIGH serial reception at Serial Port is enabled. Otherwise serial reception at Serial Port is disabled.	R/W	0
s0con.3	tb8	Transmitter bit 8 This bit is used while transmitting data through Serial Port in Modes 2 and 3. The state of this bit corresponds with the state of the 9th transmitted bit (e.g. parity check or multiprocessor communication). It is controlled by software.	R/W	0
s0con.2	rb8	Received bit 8 This bit is used while receiving data through Serial Port 0 in Modes 2 and 3. It reflects the state of the 9th received bit. In Mode 1, if multiprocessor communication is enabled (sm2 = 0), this bit is the stop bit that was received. In Mode 0 this bit is not used.	R/W	0
s0con.1	ti	In Mode 0 this bit is not used. Transmit interrupt flag It indicates completion of a serial transmission at Serial Port. It is set by hardware at the end of bit 8 in mode 0 or at the beginning of a stop bit in other modes. It must be cleared by software.		0
s0con.0	ri	Receive interrupt flag It is set by hardware after completion of a serial reception at Serial Port 0. It is set by hardware at the end of bit 8 in mode 0 or in the middle of a stop bit in other modes. It must be cleared by software.	R/W	0

Table 20-1 SCON Register (98h)

Table 20-2 Serial Port modes and Baud Rates

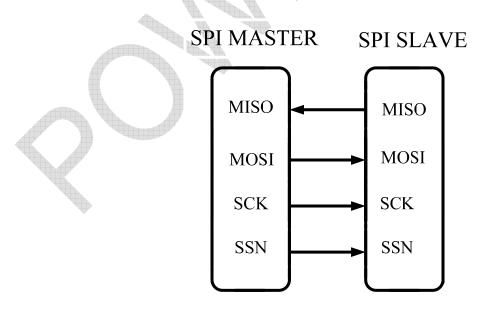
sm0	sm1	Mode	Description	Baud Ra	te	
0	0	Mode 0	Shift register	Fsys/12		
0	1	Mode 1	8-bit UART	Timer 1 overflow		
1	0	Mode 2	9-bit UART	Depends on PCON.SMOD		
				smod	Baud Rate	
				0	Fsys/64	
				1	Fsys/32	
1	1	Mode 3	9-bit UART	Timer 1 overflow		

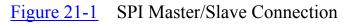
20.7.2 Serial Port Data Buffer – SBUF

Table 20-3 SBUF Register (99h)

Bit	Symbol	Description			Туре	Reset
sbuf.7~0	-	Serial port data buffer			R/W	00h

21 SPI

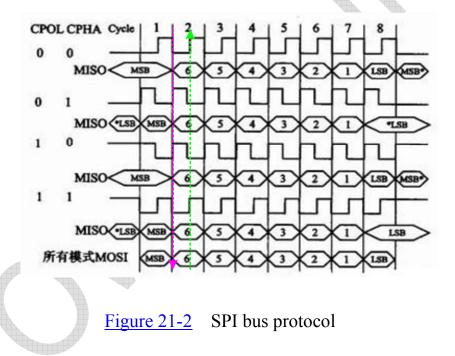

The Serial Peripheral Interface (SPI) allows high-speed, full-duplex synchronous data transfer between the device and peripheral devices or between multiple microcontroller devices, including multiple masters and slaves on a single bus.


The SPI interface is often used to communicate with external peripheral devices such as RF transceiver, sensors, Flash or EEPROM memory devices etc. Originally developed by Motorola, the four line SPI interface is a synchronous serial data interface that has a relatively simple communication protocol simplifying the programming requirements when communicating with external hardware devices.

The communication is full duplex and operates as a slave/master type, where the device can be either master or slave. Although the SPI interface specification can control multiple slave devices from a single master, but this device provided only one SCSB pin. If the master needs to control multiple slave devices from a single master, the master can use I/O pin to select the slave devices.

21.1 SPI Interface

The SPI interface is a full duplex synchronous serial data link. It is a four line interface with pin names MISO, MOSI, SCK and SCSB. Pins MISO and MOSI are the Serial Data Input and Serial Data Output lines, SCK is the Serial Clock line and SCSB is the Slave Select line. As the SPI interface pins are pin-shared with normal I/O pins and with the I2C function pins. Communication between devices connected to the SPI interface is carried out in a slave/master mode with all data transfer initiations being implemented by the master. The Master also controls the clock signal. As the device only contains a single SCSB pin only one slave device can be utilized. The SCSB pin is controlled by software.



21.2 SPI Communication

After the SPI interface is enabled by setting the SPCON.SPEN bit high, then in the Master Mode, when data is written to the SPDAT register, transmission/reception will begin simultaneously. When the data transfer is complete, the SPIF flag will be set automatically, but must be cleared using the application program.

In the Slave Mode, when the clock signal from the master has been received, any data in the SPDAT register will be transmitted and any data on the MISO pin will be shifted into the SPDAT register. The master should output an SCSB signal to enable the slave device before a clock signal is provided. The slave data to be transferred should be well prepared at the appropriate moment relative to the SCSB signal.

SPI communication timing waveform is shown as below:

21.3 Register Definition

21.3.1 SPI Serial Peripheral Status Register – SPSTA

<u>Table 21-1</u>	SPSTA Register (E1h)
-------------------	----------------------

Bit Symbol Description	Description		Reset
spsta.7 spif Serial Periph	eral Data Transfer Flag	R	0

Bit	Symbol	Description	Туре	Reset
		Set by hardware upon data transfer completion.		
		Cleared by reading the "spsta" register with the "spif" bit		
		set, and then reading the "spdat" register.		
spsta.6	wcol	Write Collision Flag	R	0
		Set by hardware upon write collision to "spdat".		
		Cleared by an access to "spsta" register and an access to		
		"spdat" register.		
spsta.5	sserr	Synchronous Serial Slave Error Flag	R	0
		Set by hardware when "ssn" input is deasserted before the		
		end of receive sequence. Cleared by disabling the SPI		
		module (clearing "spen" bit in "spcon" register).		
spsta.4	modf	Mode Fault Flag	R	0
		Set by hardware when the SCSB pin level is in conflict with		
		actual mode of the SPI controller (configured as master		
		while externally selected as slave).		
		Cleared by hardware when the SCSB pin is at appropriate		
		level. Can be also cleared by software by reading the "spsta"		
		register with "modf" bit set.		
spsta.3~0	-	-	R	4'b0

21.3.2 SPI Serial Peripheral Control Register – SPCON

Table 21-2	2 SPCON Register (E2h)	

Bit	Symbol	Description	Туре	Reset
spcon.7	spr2	Serial Peripheral Rate 2	R/W	0
		Together with "spr1" and "spr0" defines the clock rate in		
		master mode.		
spcon.6	spen	Serial Peripheral Enable	R/W	0
		When cleared disables the SPI interface. When set enables		
		the SPI interface.		
spcon.5	ssdis	SS Disable	R/W	0
		When cleared enables the SCSB input in both Master and		
		Slave modes. When set disables the SCSB input in both		
		Master and Slave modes. In Slave mode, this bit has no		
		effect if "cpha"=1. When "ssdis" is set, no "modf" interrupt		
		request will be generated.		
spcon.4	mstr	Serial Peripheral Master	R/W	1
		When cleared configures the SPI as a Slave. When set		
		configures the SPI as a Master.		

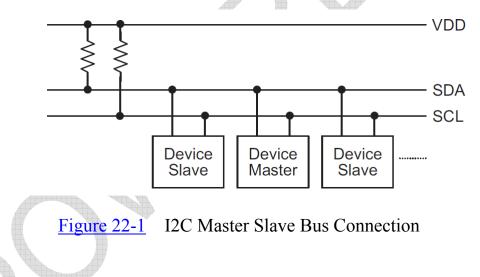
Bit	Symbol	Description	Туре	Reset
spcon.3	cpol	Clock Polarity	R/W	0
		When cleared, the SCK is set to 0 in idle state. When set, the		
		SCK is set to 1 in idle state.		
spcon.2	cpha	Clock Phase	R/W	1
		When cleared, data is sampled when the "scki"/"scko"		
		leaves the idle state (see "cpol"). When set, data is sampled		
		when the "scki"/"scko" returns to idle state (see "cpol").		
spcon.1	spr1	Serial Peripheral Rate	R/W	0
spcon.0	spr0	Together with "spr2" specify the serial clock rate in Master	R/W	0
		mode.		

spr2	spr1	spr0	Serial Peripheral Rate
0	0	0	Fclk/2
0	0	1	Fclk/4
0	1	0	Fclk/8
0	1	1	Fclk/16
1	0	0	Fclk/32
1	0	1	Fclk/64
1	1	0	Fclk/128
1	1	1	the master clock is not generated
			(when "cpol" = '1' SCK is high level,
			otherwise is low level

Table 21-3 Serial Peripheral Rate

21.3.3 SPI Serial Peripheral Data Register – SPDAT

Table 21-4 SPDAT Register (E3h)


Bit	Symbol	Description		Reset
spdat.7~0	-	SPI serial peripheral data	R/W	00h

22 I2C

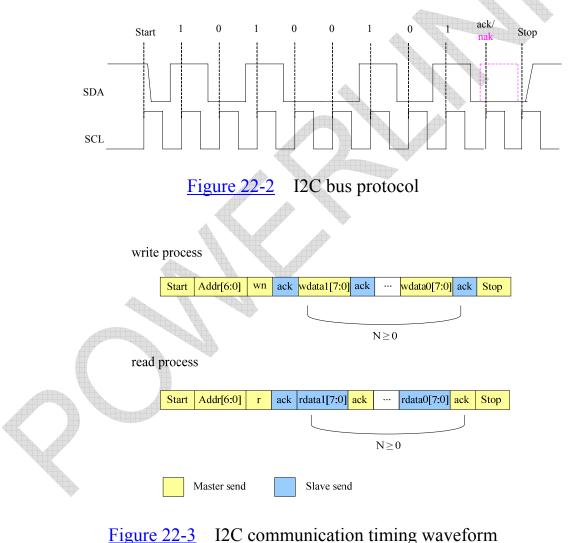
The I2C interface is used to communicate with external peripheral devices such as RF transceiver, sensors, EEPROM memory etc. Originally developed by Philips, it is a two line low speed serial interface for synchronous serial data transfer. The advantage of only two lines for communication, relatively simple communication protocol and the ability to accommodate multiple devices on the same bus has made it an extremely popular interface type for many applications.

22.1 I2C Interface

The Two-Wire Interface (I2C) is a bi-directional 2-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. The only external hardware needed to implement the bus is a single pull-up resistor for each of the I2C bus lines. All devices connected to the bus have individual addresses, and mechanisms for resolving bus contention are inherent in the I2C protocol. Any of the devices connected to the bus can be master or slave.

22.2 I2C Communication

The I2C serial interface is a two line interface, a serial data line, SDA, and serial clock line, SCL. As many devices may be connected together on the same bus, their outputs are both open drain types. For this reason it is necessary that external pull-high resistors are connected to these outputs. Note that no chip select line exists, as each device on the I2C bus is identified by a unique address which will be transmitted and received on the I2C bus.


When two devices communicate with each other on the bidirectional I2C bus, one is known as the master device and one as the slave device. Both master and slave can transmit and receive data, however, it is the master device that has overall control of the bus. For these devices, which only operates in slave mode,

there are two methods of transferring data on the I2C bus, the slave transmit mode and the slave receive mode.

Communication on the I2C bus requires four separate steps, a START signal, a slave device address transmission, a data transmission and finally a STOP signal. When a START signal is placed on the I2C bus, all devices on the bus will receive this signal and be notified of the imminent arrival of data on the bus. The first seven bits of the data will be the slave address with the first bit being the MSB.

The START signal can only be generated by the master device connected to the I2C bus and not by the slave device. This START signal will be detected by all devices connected to the I2C bus. A START condition occurs when a high to low transition on the SDA line takes place when the SCL line remains high.

I2C communication timing waveform is shown as below:

22.3 Register Definition

22.3.1 I2C Status Register – I2CSTA

Table 22-1 I2CSTA Register (DDh)

Bit	Symbol	Description	Туре	Reset
i2csta.7~3	-	I2C Status Code	R	F8h
i2csta.2~0	-	-	R	

22.3.2 I2C Control Register – I2CCON

Bit	Symbol	Description	Туре	Reset
i2ccon.7	cr2	Clock rate bit 2	R/W	0
i2ccon.6	ens1	I2C enable bit	R/W	0
i2ccon.5	sta	START Flag	R/W	0
		When sta='1', the I2C component checks the I2C bus status		
		and if the bus is free a START condition is generated.		
i2ccon.4	sto	STOP Flag	R/W	0
		When sto='1' and I2C interface is in master mode, a STOP		
		condition is transmitted to the I2C bus.		
i2ccon.3	si	Serial Interrupt Flag	R/W	0
l		The "si "is set by hardware when one of 25 out of 26		
		possible I2C states is entered. The only state that does not		
		set the "si" is state F8h, which indicates that no relevant		
		state information is available. The "si" flag must be cleared		
		by software. In order to clear the "si" bit, '0' must be		
		written to this bit. Writing a '1' to si bit does not change		
		value of the "si".		
i2ccon.2	aa	Assert Acknowledge Flag	R/W	0
		When aa='1', an "acknowledge" will be returned when:		
		- the "own slave address" has been received		
		- the general call address has been received while gc bit		
		in i2caddr register was set		
		- a data byte has been received while I2C was in master		

Table 22-2 I2CCON Register (DCh)

Bit	Symbol	Description	Туре	Reset
		receiver mode		
		- a data byte has been received while I2C was in slave		
		receiver mode		
		When aa='0', an "not acknowledge" will be returned when:		
		- a data byte has been received while I2C was in master		
		receiver mode		
		- a data byte has been received while I2C was in slave		
		receiver mode		
i2ccon.1	cr1	Clock rate bit 1	R/W	0
i2ccon.0	cr0	Clock rate bit 0	R/W	0

This programmable clock pulse generator provides the "sclo" clock pulses when the I2C is in the master mode. The clock generator is suppressed when the I2C is in the slave mode.

The function of the clock generator is controlled by bits "cr0", "cr1" and "cr2" of "i2ccon" register. The table below shows the possible rates of "clko" in the master mode.

The "bclk" input referenced in the table is connected to the Timer 1 overflow output. That means the baud rate of the I2C can be controlled by the Timer 1.

cr2	cr1	cr0	Bi	Bit Frequency		CLK Divided	
CF2	cri	cro	4MHz	8MHz	12MHz		
0	0	0	15.6	31	47	256	
0	0	1	17.8	35.8	54	224	
0	1	0	21	42	63	192	
0	1	1	15	50	75	160	
1	0	0	4.2	8.4	12.5	960	
1	0	1	33.3	66.6	100	120	
1	1	0	66.6	133.3	200	60	
1	1	1	"bclk"(1	"bclk" (T1 overflow) input divided by 8			

Table 22-3 I2CCON Register (DCh)

22.3.3 I2C Address Register – I2CADR

Bit	Symbol	Description	Туре	Reset
i2cadr.7~1	adr	Own I2C slave address (7 bit)	R/W	7'b0
i2cadr.0	gc	General Call Address Acknowledge	R/W	1'b0
		If this bit is set, the general call address is recognized;		

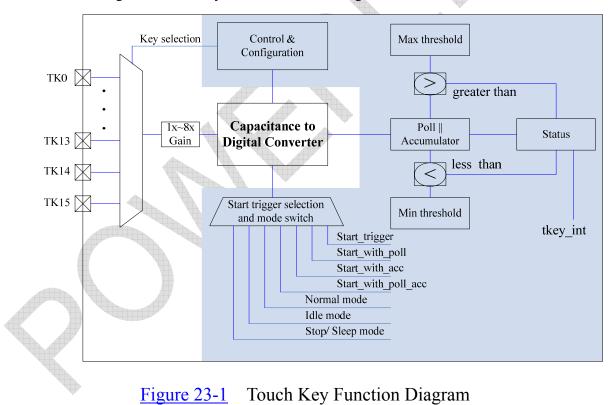
Table 22-4 I2CADR Register (DBh)

Bit	Symbol	Description	Туре	Reset
		otherwise it is ignored.		

22.3.4 I2C Data Register – I2CDAT

Table 22-5 I2CDAT Register (DAh)

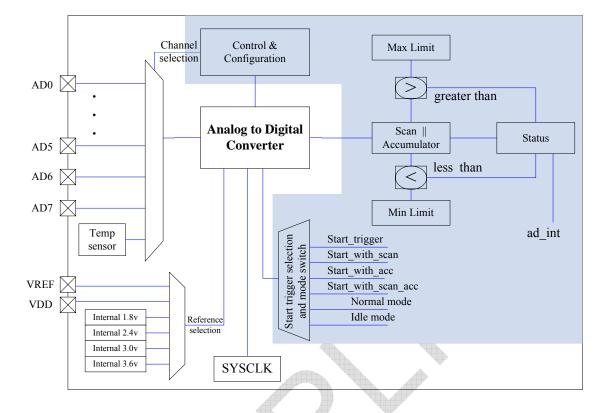
7.1	a		-	
Bit	Symbol	Description	Туре	Reset
i2cdat.7~0	-	I2C data	R/W	00h


23 A/D & TouchKey

23.1 Overview

The chip supports the functions of ADC, touch keys, but just could be configured by CPU as one function separately at one time, since touch key function needs to use ADC module for calculating.

ADC function could only work in normal mode, and the operation clock could be selected as 1/2/4/8 pre-scale of system clock. However, Touch Key could work in both normal mode and low power mode (idle/stop/sleep mode).


In normal mode, both system clock and 32khz internal clock are always working. While only 32khz clock is always working in low power mode, though system clock could be used when needed, for reduce the power consumption. The touch action could wakeup the system from low power mode (idle/stop/sleep), and when this happens, the system will then enter into normal work mode.

The block diagram of Touch key function is shown as Figure 23-1.

The block diagram of ADC function is shown as Figure 23-2.

Figure 23-2 ADC Function Diagram

23.1.1 Touch Key Operation

When a finger touches or is in proximity to a touch pad, the capacitance of the pad will increase. By using this capacitance variation to change slightly the charge time of the internal sense comparator, touch actions can be sensed by measuring these charge time changes.

The device contains 16 touch key inputs which are shared with logical I/O pins, with the desired function selected using register bits. The Touch Key module also has its own interrupt vectors and set of interrupts flags.

23.1.2 Touch Key & ADC Interrupt

The interrupt could be involved by Touch key or ADC, depending on the function selected in SFR register 'tkcon0'.

When ADC function is selected, the interrupt could be triggered by ADC data is ready to read, or be triggered by the end of all the session done.

The session done for ADC is defined as the end of accumulation if accumulation is enabled, or the end of channel scan if scan is enabled, or end of both of accumulation and channel scan if they are

enabled both.

When Touch key is selected, the interrupt source could be configured as touch action happened or touch key data is ready to read in normal/idle work mode, however, the interrupt could only be triggered by touch action in stop/sleep work mode;

23.1.3 Touch Key Work Mode

The modes in which the design supports to configure to work lists at the following table:

Mode	Key	Polling	Accum	Interrupt	Work Mode States			
			ulation	Source				
Normal	single	Х	Ν	Data ready	trig_sel:			
/IDLE				to read or	0 - Charging with single key, generating interrupt			
				touch action	after completion of each data conversion;			
					1 – Continue to work, generating interrupt when the			
					single key is judged to be a touch action(compare			
					with the threshold of single key);			
Normal	single	Х	Y	Data ready	trig_sel:			
/IDLE				to read or	0 – Multiple charging with single key, accumulating			
				touch action	the converted data, generating interrupt when the			
					number of times is reached;			
					1 – Continue to work, generating interrupt when the			
		4			single key is judged to be a touch action(compare			
					with the accumulation threshold);			
Normal	Comb	N	Ν	Data ready	trig_sel:			
/IDLE	*			to read or	0 – Charging with combined keys, generating			
				touch action	interrupt after completion of each data conversion;			
					1 – Continue to work, generating interrupt when the			
					combined keys are judged to be a touch			
					action(compare with the threshold of combined			
					keys);			
Normal	Comb	Ν	Y	Data ready	trig_sel:			
/IDLE				to read or	0 - Multiple charging with combined keys,			
				touch action	accumulating the converted data, generating			
					interrupt when the number of times is reached;			
					1 – Continue to work, generating interrupt when the			
					combined keys are judged to be a touch action after			
					multiple accumulation (compare with the			
					accumulation threshold of combined keys);			
Normal	Comb	Y	Ν	Data ready	trig_sel:			

Table 23-1 Touch Key Work Mode

Mode	Key	Polling	Accum	Interrupt	Work Mode States
			ulation	Source	
/IDLE				to read or	0 – Polling charge with single key, generating
				touch action	interrupt after completion of each data conversion;
					1 – Continue to work, generating interrupt when the
					single key is polling judged to be a touch
					action(compare with the threshold of single key);
Normal	Comb	Y	Y	Data ready	trig_sel:
/IDLE				to read or	0 – Multiple charging with single key, accumulating
				touch action	the converted data, generating interrupt when the
					number of times is reached;
					1 – Continue to work, generating interrupt when the
					single key is judged to be a touch action after
					multiple accumulations (compare with the
					accumulation threshold);
STOP	single	Х	N	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	single key is judged to be a touch action(compare
					with the threshold of single key);
STOP	single	Х	Y	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	single key is judged to be a touch action(compare
					with the accumulation threshold);
STOP	Comb	N	N	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	combined keys are judged to be a touch
					action(compare with the threshold of combined
					keys);
STOP	Comb	N	Y	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	combined keys are judged to be a touch action after
					multiple accumulation (compare with the
					accumulation threshold of combined keys);
STOP	Comb	Y	N	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	single key is polling judged to be a touch
			r		action(compare with the threshold of single key);
STOP	Comb	Y	Y	Only key	Continue to work, generating interrupt when the
/SLEEP				touch action	single key is judged to be a touch action after
					multiple accumulations (compare with the
					accumulation threshold);

Notes: *Combined key depend the selected channel

PL51T020

23.2 Register Definition

23.2.1 Touch Key Registers Address Map

Name	SFR Address	Bit width	Function states
TKDATL	0xA1	8	Touch Key data low 8 bits
TKDATH	0xA2	8	Touch Key data high 8 bits
TKCHS0	0xA3	8	Touch Key channels select register 0
TKCHS1	0xA4	8	Touch Key channels select register 1
TKCON0	0xA5	8	Touch Key control register 0
TKCON1	0xA6	8	Touch Key control register 1
TKCON2	0xA7	8	Touch Key control register 2
TKADCF	0x9D	8	Touch Key ADC configure register
TKCSCF	0x9E	8	Touch Key capsensor configure register
TKCSOF	0x9F	8	Touch Key capsensor offset adjustment
TKWKL0	0xD2	8	Touch Key wakeup threshold 0 low 8 bits
TKWKH0	0xD3	8	Touch Key wakeup threshold 0 high 8 bits
TKWKL1	0xD4	8	Touch Key wakeup threshold 1 low 8 bits
TKWKH1	0xD5	8	Touch Key wakeup threshold 1 high 8 bits

Table 23-2Touch Key Registers Address Map

23.2.2 Touch key Data Register – TKDATL

Table 23-3	TKDATL Register (A1h)	
------------	-----------------------	--

Bit	Symbol	Description	Туре	Reset
tkdatl.7~0	-	When 'tken' is set, the register store the touch key low 8bits	R/W	00h
		data;		
		When 'adcen' is set, the register store the ADC low 8bits		
		data;		

23.2.3 Touch key Data Register – TKDATH

Table 23-4 TKDATH Register (A2h)

Bit	Symbol	Description	Туре	Reset
tkdath.7~0	-	When 'tken' is set, the register store the touch key high 8bits	R/W	00h

Bit	Symbol	Description	Туре	Reset
		data;		
		When 'adcen' is set, the register store the ADC high 8bits		
		data;		

23.2.4 Touch key7-0 select Register – TKCHS0

Table 23-5 TKCHS0 Register (A3h)

Bit	Symbol	Description	Туре	Reset
tkchs0.7~0	-	Touch key 7-0 channel select bit	R/W	00h

23.2.5 Touch key15-8 select Register – TKCHS1

Table 23-6 TKCHS1 Register (A4h)

Bit	Symbol	Description	Туре	Reset
tkchs1.7~0	-	Touch key 15-8 channel select bit and ADC channel 7~0	R/W	00h
		select bit		

23.2.6 Touch key control Register – TKCON0

Bit	Symbol	Description	Туре	Reset		
tkcon0.7	tken	If set, Touch key is enabled and 'adcen' could not be set; if	R/W	1'b0		
		clear, Touch key is disabled and 'adcen' can be set				
tkcon0.6	adcen	If set AD Convert is enabled, otherwise is disabled	R/W	1'b0		
tkcon0.5	-	It always should be 0.	R/W	1'b0		
tkcon0.4	wait_cpurd	If set, wait till CPU to read out the data at present, then	R/W	1'b0		
		start the next touch key probe operation.				
tkcon0.3	freq_sel2	ADC analog clock frequency prescaler of system clock	R/W	3'b0		
		select options:				

Table 23-7 TKCON0 Register (A5h)

Bit	Symbol	Description	Туре	Reset
tkcon0.2	freq_sel1	3'b000: no prescaler		
		3'b001: prescaler by 2		
		3'b010: prescaler by 4		
tkcon0.1	freq_sel0	3'b011: prescaler by 8		
		3'b100: prescaler by 16		
		3'b101: prescaler by 32		
		3'b110: no prescaler	4	
		3'b111: no prescaler		
tkcon0.0	mode	When ADC function is selected, this bit select the ADC	R/W	1'b0
		work mode, <i>must be cleared</i> , continuous conversion mode		
		is selected;		
		When Touch Key function is selected, this bit select the		
		Touch Key work mode, if set Polling mode is open,		
		otherwise, Polling mode is closed		

23.2.7 Touch key control Register – TKCON1

Bit	Symbol	Description	Туре	Reset
tkcon1.7	start	If set, trigger the analog function start working, in the end	R/W	1'b0
		of the operation, this bit will be auto cleared and wait the		
		next start trigger.		
tkcon1.6	accum2	Accumulative number:	R/W	3°b0
		3'h0: single time convert data		
		3'h1: accumulate 2 times convert data		
tkcon1.5	accum1	3'h2: accumulate 4 times convert data		
theon	accum	3'h3: accumulate 8 times convert data		
		3'h7: accumulate 128 times convert data		
tkcon1.4	accum0	Note: please configure the accumulation time carefully to		
	7	avoid the overflow of sum, if overflow, the 'ov' in 'TKSTA'		
		will be set to indicates the bad accumulation.		
tkcon1.3	ave_dis	Average operation disable	R/W	1'b0
tkcon1.2	trig_sel	In the normal/idle work mode, when configure as touch key	R/W	1'b0
		function, interrupt could be triggered by two sources: data is		
		valid or key touch action:		
		1'b0: data is valid and trigger interrupt		
		1'b1: key touch action trigger interrupt		
tkcon1.1	func_flg	When read as 0, indicates the design is working as touch	R/W	1'b0
		key function otherwise the design is working as ADC		

Table 23-8 TKCON1 Register (A6h)

Bit	Symbol	Description	Туре	Reset
		function.		
tkcon1.0	ov	Indicates the overflow is occurred in the accumulative	R/W	1'b0
		operation		

23.2.8 Touch key control Register – TKCON2

Bit	Symbol	Description	Туре	Reset
tkcon2.7	cap_lp	Capsense low power enable	R/W	1'b0
tkcon2.6	ses_gap2	The gap time between two session of accumulation	R/W	3'b0
		operation, configure as:		
		3'h0: 16 clock period of 'clk_32k'		
		3'h1: 32 clock period of 'clk_32k'		
tkcon2.5	ses_gap1	3'h2: 64 clock period of 'clk_32k'		
1100112.5	bes_gup1	3'h3: 128 clock period of 'clk_32k'		
		3'h7: 2048 clock period of 'clk_32k'		
		NOTE: one session of accumulation includes the		
tkcon2.4	ses_gap0	channel selected in registers 'tkchs1/tkchs0' charge		
		one times at less. In other words, this configure		
		number is the number of session contained in		
		completely one touch action detection.		
tkcon2.3	idle_sta	idle start flag, indicates the process triggered by	R/W	1'b0
		previous go-idle command is not finished yet, and the		
		next step will be continue after coming go-idle		
		command, this bit will be auto-cleared by hardware		
		when end of process, it also could be cleared by CPU		
tkcon2.2	wait_cpu	Wait CPU flag, indicates process is handling wait for	R/W	1'b0
		CPU read, it should be cleared by CPU setting 1'b0		
		after read out data.		
tkcon2.1	sta_gap1	The gap time between two start trigger, configure as:	R/W	2'b0
		2'b00: 2 clock period of 'tk_clk'		
tkcon2.0	sta gap0	2'b01: 4 clock period of 'tk_clk'		
INCO112.0	sia_gapu	2'b10: 8 clock period of 'tk_clk'		
		2'b11: 16 clock period of 'tk_clk'		

Table 23-9 TKCON2 Register (A7h)

23.2.9 Touch key status Register – TKADCF

Bit	Symbol	Description	Туре	Reset
tkadcf.7	inject	If set, injection operation is enabled, the current normal	R/TW	1'b0
		channel conversion is interrupted and channel 7 is		
		injected into ADC to start conversion until this bit is		
		cleared		
tkadcf.6	adc_pump	1:support VDD50 higher than 1.8V;	R/W	1'b0
		0:support VDD50 higher than 2.7V;		
tkadcf.5	iref_adj1	2'b00:1uA;	R/W	2'b0
		2'b01:2uA;		
tkadcf.4	iref_adj0	2'b10:4uA;		
		2'b11:6uA;		
tkadcf.3	cons_sta*	This bit is used for ADC continuously convert mode only,	R/W	1'b0
		and for other usage is forbidden, And it must be set		
		immediately after the 'tkcon1.7'(start) is set, otherwise, the		
		'tkcon1.7'(start) can only work once, it means ADC		
		converts data one time only,		
tkadcf.2	adc_vref2	ADC reference select:	R/W	3°b0
		3'b00x:VDD pin;		
tkadcf.1	adc_vref1	3'b01x: VREF pin;		
		3'b100: internal 1.8V;		
1 1 0 0	1	3'b101: internal 2.4V;		
tkadcf.0	adc_vref0	3'b110: internal 3.0V;		
		3'b111: internal 3.6V;		

Table 23-10 TKADCF Register (9Dh)

Note:

Bit tkadcf.3(cons_sta) is used for ADC continuously convert mode only, and for other usage is forbidden. And it must be set immediately after the 'tkcon1.7'(start) is set, and make sure there is no interrupt to break the sequence, otherwise, the 'tkcon1.7'(start) can only work once, it means ADC converts data one time only, the following steps should be obeyed for ADC continuously convert mode:

Step1: ORLTKCON0, #040H// make sure the others configuration(like channel) is configured right beforeStep2: CLREA// clear all interrupt before trigger ADC startStep3: ORLTKCON1, #080H// trigger ADC startStep4: ORLTKADCF, #008H// trigger ADC continuously mode start 'cons_sta'Step5:// wait until ADC interrupt comes and get the ADC convert data from 'tkdath', 'tkdatl'

Step6: // cleared ADC continuously mode start 'cons_sta' if it the ADC data is enough and then clear 'adcen'

23.2.10 Touch key status Register – TKCSCF

Bit	Symbol	Description	Туре	Reset
tkcscf.7	c2v_cha_sel2	Trimming the c2v charge time:	R/W	3'b0
		3'b000: analog charge time last 6 clocks of 'tk_clk'		
		3'b001: analog charge time last 8 clocks of 'tk_clk'		
tkcscf.6	c2v_cha_sel1	3'b010: analog charge time last 12 clocks of 'tk_clk'		
		3'b011: analog charge time last 16 clocks of 'tk_clk'		
		3'b100: analog charge time last 20 clocks of 'tk_clk'		
tkcscf.5	c2v_cha_sel0	3'b101: analog charge time last 24 clocks of 'tk_clk'		
		3'b110: analog charge time last 28 clocks of 'tk_clk'		
		3'b111: analog charge time last 32 clocks of 'tk_clk'		
tkcscf.4~3	-	Reserved.	R/W	2'b0
tkcscf.2	cap_size2	Configure the capacitance size range of touch key used :	R/W	3'b0
		3'b000: 1pf ~ 10pf		
		3'b001: 10pf ~ 20pf		
tkcscf.1	cap_size1	3'b010: 20pf ~ 30pf		
		3'b011: 30pf ~ 40pf		
		3'b100: 40pf ~ 50pf		
tkcscf.0	cap_size0	3'b101: 50pf ~ 60pf		
		3'b110: 60pf ~ 70pf		
		3'b111: 70pf ~ 80pf		

Table 23-11 TKCSCF Register (9Eh)

23.2.11 Touch key status Register – TKCSOF

Table 23-12 TKCSOF Register (9Fh)

Bit	Symbol	Description	Туре	Reset
tkcsof.7	-	Reserved.	R/W	1'b0
tkcsof.6	cpol	Select the polarity of comparison between convert data and	R/W	1'b0
		wakeup threshold value configured into 'tkwk0/tkwk1':		
		1'b0: involves interrupt when data is more than 'tkwk1' or		
		less than 'tkwk0' (X≤tkwk0 or X≥tkwk1)		
		1'b1: involves interrupt when data is less than 'tkwk1' and		
		more than 'tkwk0' (tkwk0 \leq X \leq tkwk1)		

Bit	Symbol	Description	Туре	Reset
tkcsof.5	ch_sw1	Four type sources could be select as ADC channel:	R/W	2'b0
		2'b00: switch to P2, configure 'tkchs1[7:0]' to select any		
		P2.7~P2.0 as channel;		
tkcsof.4	ch_sw0	2'b01: switch to internal 1.2v;		
		2'b10: switch to ground (0v);		
		2'b11: switch to ADC reference voltage;		
tkcsof.3~0	cs_ofst3~0	Touch key cap sensor offset adjust bits	R/W	4'hF

23.2.12 Touch key Wakeup threshold Register – TKWKL0

Bit	Symbol	Description	Туре	Reset
tkwkl0.7~0	-	When 'tken' is set, the register store the touch key wakeup 0	R/W	00h
		threshold low 8bits data;		
		When 'adcen' is set, the register store the ADC limit 0		
		threshold low 8bits data;		

Table 23-13 TKWKL0 Register (D2h)

23.2.13 Touch key Wakeup threshold Register – TKWKH0

Table 23-14 TKWKH0 Register (D3h)

Bit	Symbol	Description	Туре	Reset
tkwkh0.7~0	-	When 'tken' is set, the register store the touch key wakeup 0	R/W	00h
		threshold high 8bits data;		
		When 'adcen' is set, the register store the ADC limit 0		
		threshold high 8bits data;		

23.2.14 Touch key Wakeup threshold Register – TKWKL1

Table 23-15 TKWKL1 Register (D4h)

Bit	Symbol	Description	Туре	Reset
tkwkl1.7~0	-	When 'tken' is set, the register store the touch key wakeup 1	R/W	00h
		threshold low 8bits data;		
		When 'adcen' is set, the register store the ADC limit 1		
		threshold low 8bits data;		

23.2.15 Touch key Wakeup threshold Register – TKWKH1

Bit	Symbol	Description	Туре	Reset
tkwkh1.7~0	-	When 'tken' is set, the register store the touch key wakeup 1	R/W	00h
		threshold high 8bits data;		
		When 'adcen' is set, the register store the ADC limit 1		
		threshold high 8bits data;		

Table 23-16 TKWKH1 Register (D5h)

24 Analog Comparator

24.1 Overview

The device is provided one analog comparator. Input and output options allow use of the comparator in a number of different configurations. The comparator output is a logical one when its positive input is greater than its negative input, otherwise the output is a zero. The comparator can be configured to cause to an interrupt when the output value change. The block diagram is as below.

The comparator has two control registers CMPCON0 and CMPCON1, Both Inputs are CMP1, CMP2, CMPVREF and internal reference voltage, and output is CMPOUT. After enable comparator the comparator need waited stable time to guarantee comparator output.

The value of internal reference voltage (Vref) is 1.2V (+/-2%, @25°C).

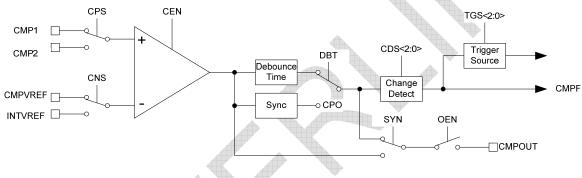


Figure 24-1 Analog Comparator

24.2 Register Definition

24.2.1 Comparator Control Register 0 – CMPCON0

Bit	Symbol	Description	Туре	Reset
cmpcon0.7	cen	Comparator enable	R/W	0
		0: Disable Comparator		
		1: Enabled Comparator		
cmpcon0.6	cps	Comparator positive input select	R/W	0
		0: CMP1 is selected as the positive comparator input		
		1: CMP2 is selected as the positive comparator input		
cmpcon0.5	cns	Comparator negative input select	R/W	0
		0: CMPVREF is selected as the negative comparator input		

Table 24-1 CMPCON0 Register (BDh)

Bit	Symbol	Description	Туре	Reset
		1: INTVREF is selected as the negative comparator input		
cmpcon0.4	oen	Comparator output enable	R/W	0
		1: CMPOUT output is enabled if CEN = 1		
		0: CMPOUT output is disabled		
cmpcon0.3	сро	Comparator output	R/W	0
		Synchronized to CPU clock to allow reading by software.		
		Cleared when the comparator is disabled (CEN = 0).		
cmpcon0.2	dbt	Comparator debounce time enable	R/W	0
		1: enable 8 system clocks debounce time		
		0: disable debounce time, only synchronous		
cmpcon0.1	syn	Comparator synchronous/asynchronous selection	R/W	0
		1: synchronous output		<i>.</i>
		0: asynchronous output		
cmpcon0.0	-	-	R	0

24.2.2 Comparator Control Register 1 – CMPCON1

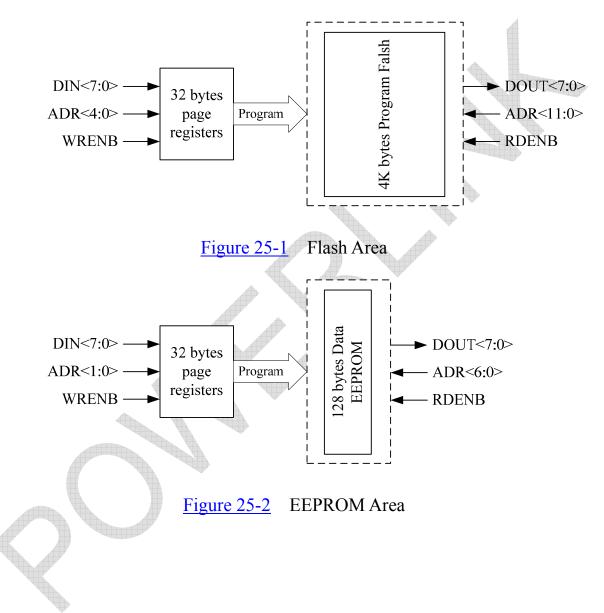
Bit	Symbol	Description	Туре	Reset
cmpcon1.7	-	-	R	0
cmpcon1.6	tgs2	Comparator trigger source selection	R/W	0
cmpcon1.5	tgs1		R/W	0
cmpcon1.4	tgs0		R/W	0
cmpcon1.3	vref_en	Internal vref12 enable, if set, vref12 enabled, if you intend	R/W	0
		to select internal vref12 as one reference voltage to		
		compare, this bit should be set before the 'cen' is set for the		
		reason that internal vref12 stable time is about 60us.		
cmpcon1.2	cds2	Comparator interrupt change detect selection	R/W	0
cmpcon1.1	cds1		R/W	0
cmpcon1.0	cds0		R/W	0

Table 24-2 CMPCON1 Register (BEh)

Table 24-3 Comparator Interrupt Change Selection

CDS2	CDS1	CDS0	Comparator Interrupt Change Detect Selection
0	0	0	Low level
0	0	1	High level
0	1	0	Falling Edge
0	1	1	Rising Edge

CDS2	CDS1	CDS0	Comparator Interrupt Change Detect Selection
1	0	0	Toggle
1	0	1	-
1	1	0	-
1	1	1	-


Table 24-4 Comparator Trigger Source Selection

TGS2	TGS1	TGS0	Comparator Trigger Source Selection
0	0	0	Normal mode
0	0	1	Switch-off PWM0 output, clear PWM0EN
0	1	0	Switch-off PWM1 output, clear PWM1EN
0	1	1	Switch-off PWM0 and PWM1 output, clear PWM0EN and PWM1EN
1	0	0	Trigger Timer 2 Capture Operation
1	0	1	Switch-on PWM0 output, set PWM0EN
1	1	0	Switch-on PWM1 output, set PWM1EN
1	1	1	Switch-on PWM0 and PWM1 output, set PWM0EN and PWM1EN

25 Flash & EEPROM

The memory contains 4K bytes program Flash code area, 128 bytes data EEPROM code area.

- ➢ 4K bytes program Flash
- > 128 bytes data EEPROM (page/byte operation)

25.1 Memory Encryption

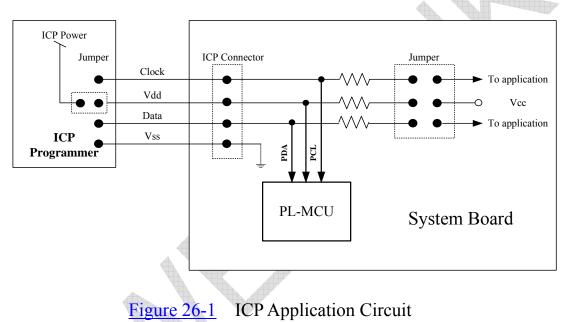
The program code area of Flash is encrypted in this device.

PL51T020

25.2 Register Definition

25.2.1 EEPROM Control Register – EECON

Bit	Symbol	Description	Туре	Reset
eecon.7	LOCK	EEPROM program inhibit	R/W	0
		0 – EEPROM program is enabled		
		1 – EEPROM program is inhibited		
eecon.6	-	-	R	0
eecon.5	-	-	R	0
eecon.4	-	-	R	0
eecon.3	EPGM	EEPROM program interrupt enable	R/W	0
		When epgm=0 EEPROM program interrupt is disabled.		
		When epgm=1 and ea=1 EEPROM program interrupt is		
		enabled.		
eecon.2	PGMF	EEPROM program interrupt flag	R/W	0
		1 – EEPROM program is finished		
		It can only be set by hardware and can be cleared by		
		software or interrupt. When set PGM to 1, it will be cleared		
		automatically.		
eecon.1	CPF	EEPROM program cross page flag	R/W	0
		1 – EEPROM program page is changed (cross page)		
		If CPF=1, PGM can not be set to 1 until CPF is cleared by		
		software. CPF can only be set to 1 by hardware; it can not		
		be set to 1 by software.		
		After cross page error occurred, more than 3 NOP must be		
		followed close behind the CPF cleared instruction to avoid		
		the reset operation of EEPROM.		
eecon.0	PGM	EEPROM program enable	R/TW	0
		1 – start EEPROM program		
		After write data to EEPROM buffer, set it to start EEPROM		
	•	program. If EEPROM buffer is not written, software can		
		not set it. When program is finished, it is cleared by		
		hardware automatically. It can not be cleared by software.		


Table 25-1 EECON Register (97h)

26 ICP (In-Circuit Programming)

26.1 Overview

The contexts of flash in the device are empty by default. User must program the flash by external Writer device or by ICP (In-Circuit Programming) tool.

In the ICP tool, the user must take note of ICP's programming pins used in system board. In some application circuits, it is highly recommended customer power off then power on after ICP programming has completed on the system board.

Note:

- 1. Circuitry separation is optionally needed between ICP and application during ICP operation.
- 2. Resistor is optional by application
- 3. When using ICP to upgrade code, the clock PCL and data PDA must be taken within design system board.
- 4. After program finished by ICP, to suggest system power must power off and remove ICP connector then power on.

The device supports programming of Flash (4K bytes AP Flash), and data EEPROM (128 bytes). User has the option to program the AP Flash and data EEPROM either individually or both.

27 Config Options

The config options are used for code configuration.

Config Option0	Config Option1	Config Option2
Program Flash lock bit	Reserved	LVR enable
Data EEPROM lock bit	Reset pin enable	0x – disabled
		10 – always enabled
		11 – enabled except EE program
XTAL options	Pump clock vision select	LVR threshold level
OPT[0]:	0 –Not dived the pump clock	00 - 2.1v
0 -> use inner feedback resistor	1 –Dived the pump clock by 2	01 - 2.4v
1 -> no inner feedback resistor	Clock output enable	10-3.7v
OPT[1]:		11-4.3v
0 -> select inner 1M resistor	Warm-up time	LPD enable
1 -> select inner 4M resistor	00~11:	
OPT[2]:	long warm-up time	
0 -> no 15pf inner cap	\rightarrow	
1 -> use 15pf inner cap	short warm-up time	
Oscillator type selection		LPD threshold level
000 – external clk input mode		0 - 2.7 v
001 – Internal RC 32KHz		1 - 4.0v
01x – Crystal Oscillator	Time-out delay	WDT enable
100 – Internal RC 4MHz	00 – 2176 clocks (66ms)	0x – disabled
101 – Internal RC 8MHz	01 – 640 clocks (20ms)	10 – enabled
110 – Internal RC 12MHz	10 – 384 clocks (12ms)	controlled by WDTEN
111 – reserved	11 – 132 clocks (4ms)	11 – enabled
		controlled by WDTEN
		disabled in STOP mode

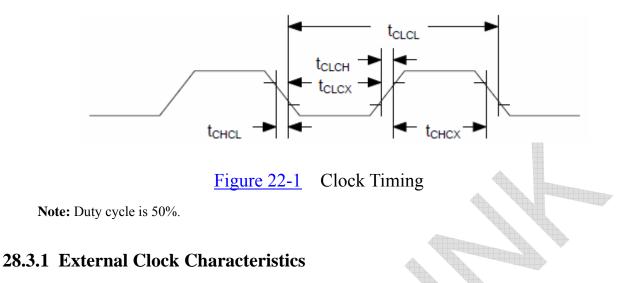
 $\langle \cdot \rangle$

28 Electrical Characteristics

28.1 Absolute Maximum Ratings

Absolute maximum ratings are the parameter values or ranges which can cause permanent damage and affect device reliability if exceeded.

Parameter	Symbol	Min.	Max.	Unit	
DC Power Supply	VDD-VSS	-0.3	+6.0	V	
Input Voltage	V _{IN}	VSS-0.3	VDD+0.3	V	
Operating Temperature	T _A	-40	+125	°C	
Storage Temperature	T _{ST}	-55	+150	°C	
Maximum Current into VDD			120	mA	
Maximum Current out of VSS			120	mA	
Maximum Current suck by a I/O pin			25	mA	
Maximum Current sourced by a I/O pin			25	mA	4
Maximum Current suck by total I/O pins			75	mA	
Maximum Current sourced by total I/O pins			75	mA	


Note: These are stress ratings only. Stress beyond these limits may cause permanent damage to the device. Functional operation of the device at these or any conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods of time may affect device reliability.

28.2 DC Electrical Characteristics

Parameter	Symbol	Specification				Test Conditions	
rarameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	
Operating Voltage	VDD	2.0		5.5	V	Freq: ~4MHz	
		2.4		5.5		Freq: ~8MHz	
÷ -		2.7		5.5		Freq: ~12MHz	
Operation Current	IOP	_	5	10	mA	No load,	
						VDD=5V@12MHz	
IDLE Current	IIDLE		2.5	5	mA	No load,	
						VDD=5V@12MHz, IDLE	
Power Down Current	ISTOP		1	10	uA	No load,	
						VDD=5V@12MHz, STOP	
Power Down Current	ISLEEP		0.5	5	uA	No load,	
						VDD=5V@12MHz, Sleep	
Input High Voltage	VIH	0.7*VDD		VDD+0.2	V		
Input Low Voltage	VIL	-0.5		0.3*VDD	V		
Output High Voltage	V _{OH}	2.5	3.5		V	VDD=5V, I _{OH} =-20mA	
Output Low Voltage	V _{OL}		0.5	0.7	V	VDD=5V, I _{OL} =+20mA	
Port Pull up Resistor	R _{PU}		50		KΩ		
POR slope rate	SPOR	0.025		4.5	V/ms		
POR threshold voltage of	VPORH	0.4	0.8	1.2	V		
rising	1 oral						
POR threshold voltage of	VPORL	0.4	0.7	1.0	V		
falling							
POE threshold voltage	V _{POE}		1.4		V		
Comparator Reference Voltage	Vref	1.176	1.20	1.224	V	$T_A = 25^{\circ}C$	

(VDD = $2.0V \sim 5.5V$, T_A = 25° C, unless otherwise specified)

28.3 AC Electrical Characteristics

(VDD = $2.0V \sim 5.5V$, T_A = 25° C, unless otherwise specified)

Parameter	Symbol	Specification				Test Conditions
rarameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Clock Frequency		4	12		MHz	
Clock High Time	t _{CHCX}	30			ns	
Clock Low Time	t _{CLCX}	30	W		ns	
Clock Rise Time	^t CLCH			10	ns	
Clock Fall Time	t _{CHCL}		Y	10	ns	

28.3.2 Internal RC OSC Characteristics

(VDD = $2.0V \sim 5.5V$, T_A = 25° C, unless otherwise specified)

Parameter	Symbol	Specification				Test Conditions	
I al ameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	
Clock Frequency			4/8/12		MHz		
Clock Frequency			± 2		%	$T_A = 25^{\circ}C@8MHz$	

28.3.3 Crystal Oscillator/Ceramic Resonator Characteristics

(VDD = $2.0V \sim 5.5V$, T_A = 25° C, unless otherwise specified)

Parameter	Symbol	Specification				Test Conditions
rarameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Clock Frequency		400K		12M	Hz	

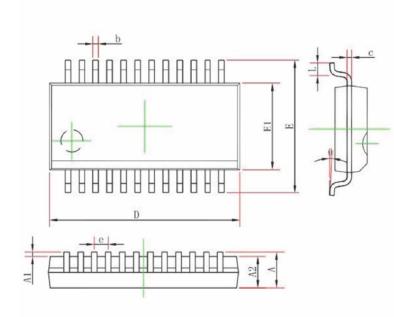
28.4 Comparator Electrical Characteristics

 $TA = 25^{\circ}C$, VCC = 2.4V to 5.5V (unless otherwise noted)

Parameter	Symbol	Specification			Test Conditions	
rarameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Common mode range comparator inputs	V _{CR}	0		VDD	V	
Comparator response time	T _{RS}		30		ns	
Comparator enable to output valid time	T _{EN}		50		us	

29 Typical Application

29.1 Touchkey Demo

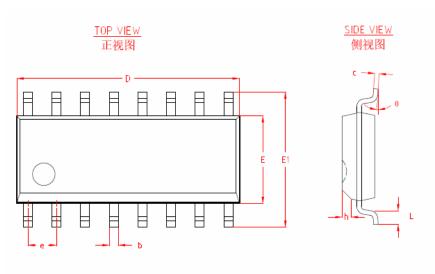

N/A

Datasheet (Preliminary Version)

30 Package Dimensions

30.1 SSOP24 Package

SSOP24 PACKAGE OUTLINE DIMENSIONS

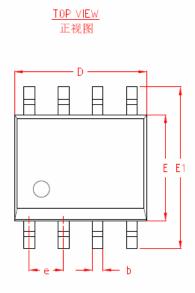


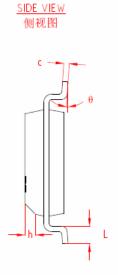
Symbol	Dimensions In Millimeters		
	Min	Max	
А		1.750	
A1	0.050	0.080	
A2	1.400	1.500	
b	0.203	0.305	
с	0.102	0.254	
D	8.550	8.650	
E1	3.800	4.000	
Е	5.800	6.200	
e	0.635 (BSC)		
L	0.400	1.270	
θ	0°	8°	

PL51T020

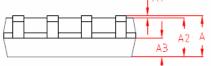

30.2 SOP16 Package

SOP16 PACKAGE OUTLINE DIMENSIONS


机械尺寸/nm Dimensions			
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX
Α	-	-	1.75
A1	0,10	-	0,25
A2	1.35	1.45	1.55
AЗ	0.60	0.65	0.70
b	0.35	-	0,50
C	0.19	-	0.25
D	9.80	10.00	10.20
E	3,80	3.90	4,00
E1	5,80	6,00	6,20
e	1.27 BSC		
h	0.30	-	0.50
L	0.40	-	0,80
0	0*	-	8°


<u>SIDE VIEW</u> 侧视图

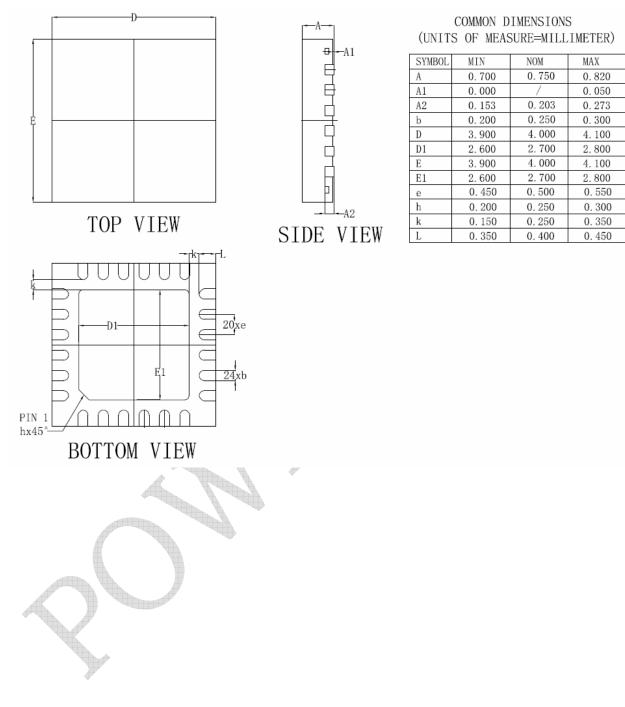
30.3 SOP8 Package

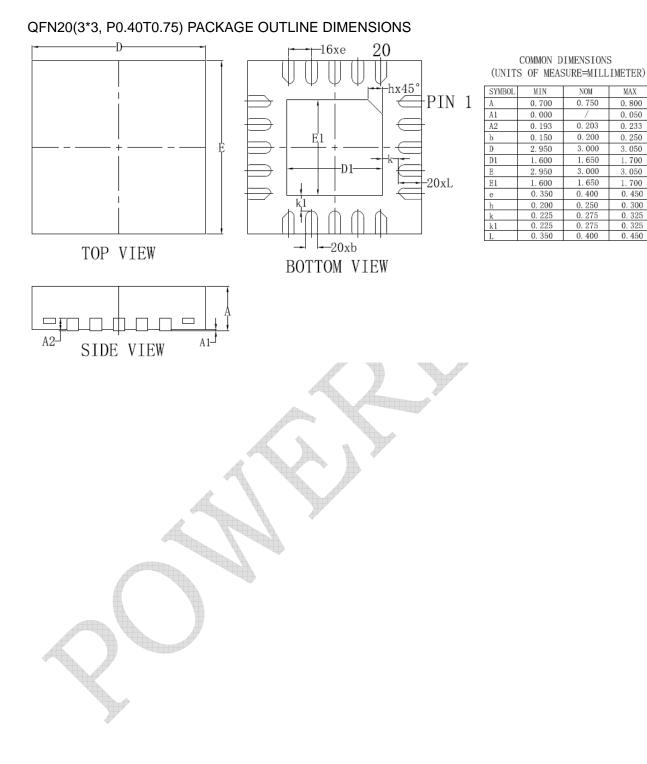

SOP8 PACKAGE OUTLINE DIMENSIONS



	to the P	1-			
	机械尺寸/mm Dimensions				
字符 SYMBOL	最小值 MIN	典型值 NOMINAL	最大值 MAX		
A	1.50	1.60	1.70		
A1	0.04	-	0.12		
A2	1.35	1.45	1.55		
A3	0.65	0.70	0.75		
b	0.35	-	0.50		
C	0.19	-	0.25		
D	4.80	4.90	5.00		
E	3.80	3.90	4.00		
E1	5.80	6.00	6.20		
e	1.27 BSC				
h	0.30	-	0.50		
L	0.50	-	0.80		
0	0°	-	8°		

<u>SIDE VIEW</u> 侧视图

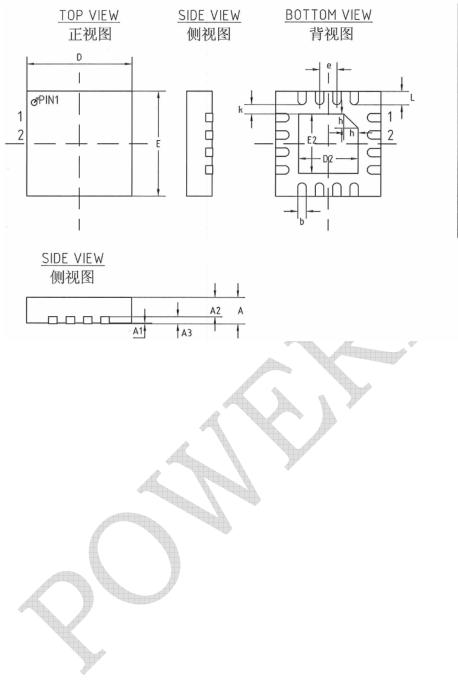



PL51T020

30.4 QFN24 Package

QFN24(4*4, P0.50T0.75) PACKAGE OUTLINE DIMENSIONS

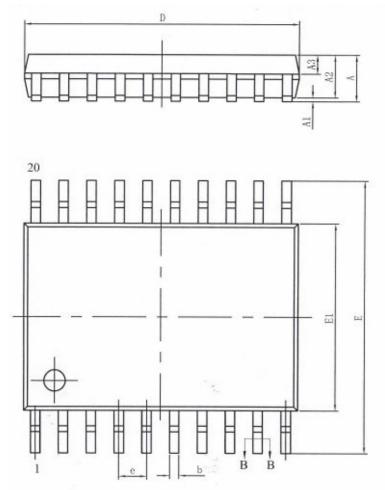
30.5 QFN20 Package



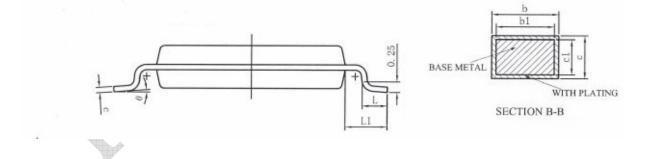
PL51T020

MAX

30.6 QFN16 Package

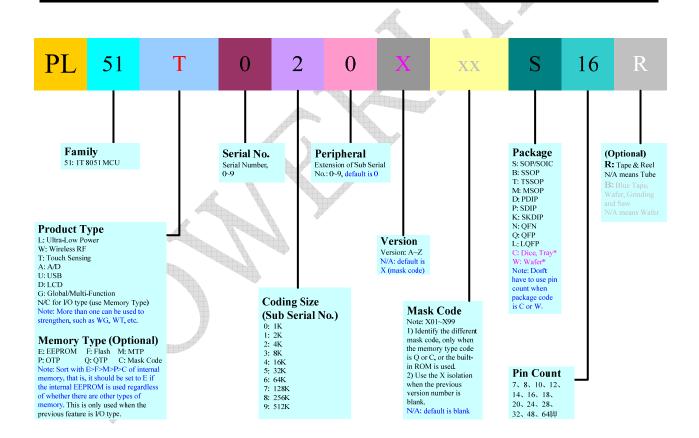

QFN16(3*3, P0.50T0.75) PACKAGE OUTLINE DIMENSIONS

机械尺寸/mm				
字符	最小值 典型值 最大值			
SYMBOL	MIN	NOMINAL	MAX	
Α	0.70	0.75	0.80	
A1	0	0.02	0.05	
A2	-	0.55	-	
A3	0.203 REF			
b	0.18 0.24 0.30			
D	3 BSC			
E	3 BSC			
e	0.50 BSC			
D2	1.6	1.7	1.8	
E2	1.6	1.7	1.8	
К	0.20 BCS			
L	0.30	0.40	0.50	
h	0.35	0.40	0.45	


30.7 TSSOP20 Package

TSSOP20 PACKAGE OUTLINE DIMENSIONS

TSS0P20L


SYMBOL	MILLIMETER			
SYMBOL	MIN	NOM	MAX	
A		-	1.20	
Al	0.05		0.15	
A2	0.80	1.00	1, 05	
A3	0.39	0.44	0.49	
b	0.20		0.29	
b1	0.19	0.22	0.25	
с	0.13	_	0.18	
c1	0.12	0.13	0.14	
D	6.40	6.50	6.60	
E1	4.30	4.40	4.50	
E	6.20	6.40	6.60	
e	0.65BSC			
L	0.45	0.60	0.75	
Ll	1.00BSC			
θ	0		8°	

Þ

31 Ordering Information

Part Number	Packaging
PL51T020C	Dice, Tray
PL51T020W	Wafer
PL51T020WB	Wafer, Blue Tape
PL51T020S8	SOP8, Tube
PL51T020S8R	SOP8, Tape&Reel
PL51T020S16	SOP16, Tube
PL51T020B24	SSOP24, Tube
PL51T020N16	QFN16, Tube
PL51T020N20	QFN20, Tube
PL51T020N24	QFN24, Tube
PL51T020T20 TSSOP20, Tube	

32 Document Revision History

Rev.	Date	Comments
0.4	2016/11/18	Preliminary Version
		Add Detail Description about Package and EEPROM config options
0.5	2017/02/14	PL51T020: Change Memory's description and Package Dimensions SSOP24/TSSOP20/SOP16/SOP8/QFN16/QFN24
0.6	2017/02/09	Updated some descriptions: Timeout Delay, CPF register, level-activated
0.6	2017/03/08	external interrupt wake-up from STOP&SLEEP, Vref to $\pm 2\%@25^{\circ}$ C, and data
		EEPROM program condition (enable LVR≥2.4V)
0.7 2017/10/10		Updated some descriptions: production description, overview, ADC scan mode,
0.7	2017/10/10	and SPI interface, etc.
0.8	2018/07/11	Operation Temperature
0.0	2010/06/05	Fixed Table 32-1 ADR: PWM2PH/PL/DH/DL & PWM3PH/PL/DH/DL
0.9	2019/06/05	Removed TSSOP20 Package
1.0	2019/11/01	Operation Temperature: -40~125°C
1.1	2020/04/10	Updated Package Dimensions
1.2	2020/07/03	Fixed TMOD.2/SPI/TCKCON
1.3	2021/01/20	Added TSSOP20 Package
1.4	2021/02/03	Added QFN20 Package
1.5	2021/03/18	Updated Part Number Description

33 Important Notice

POWERLINK reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.